| 研究生: |
李哲倫 LEE, Che-Lun |
|---|---|
| 論文名稱: |
結合代數與圖解法進⾏有機朗肯循環之製程整合與最佳化 Process Integration and Optimization of Organic Rankine Cycles via a Combined Algebraic and Graphical Method |
| 指導教授: |
李瑞元
LEE, JUI-YUAN |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
| 論文出版年: | 2025 |
| 畢業學年度: | 113 |
| 語文別: | 中文 |
| 論文頁數: | 111 |
| 中文關鍵詞: | 狹點分析 、熱整合 、熱回收 、熱交換器網路 、最佳化 、有機朗肯循環 |
| 外文關鍵詞: | Organic Rankine Cycle, pinch integration, heat recovery, algebraic optimization, energy efficiency |
| 相關次數: | 點閱:11 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
有機朗肯循環(Organic Rankine Cycle, ORC)為提升工業製程能源效率並減少環境影響提供了一種極具潛力的技術。本研究旨在發展一套完整的數學方法,以最適化方法將ORC系統整合至釋放低品位廢熱的既有工業製程中。透過代數與目標設定找出最佳解,本研究試圖識別並有效利用廢熱,以提升ORC與製程整合的可行性並最大化軸功輸出。本方法包含透過分析工業製程的總複合曲線(Grand Composite Curve, GCC)來辨識可回收的熱量,選出能達成高效率的工作流體。ORC設計可置於挾點之上或之下,以有效回收廢熱。研究中會辨識 ORC 的蒸發與冷凝溫度,並將其對應至總複合曲線上,以驗證系統整合的可行性,ORC 的最佳化設計涉及尋找一種同時最大化廢熱回收與軸功輸出的系統設置,以確保在節能與成本效益上達到最佳效果。本研究提出一種代數方法來優化 ORC 設計,運用數學方程式,透過解析推導進行最佳化,該方法能夠優化 ORC 設計,以提升低品位熱源發電應用中的經濟可行性與競爭力。本研究亦探討如何透過挖掘GCC中的「口袋區域」(pocket)來最大化能源回收與軸功輸出,並進一步降低冷公用流體用量。透過實際案例研究進行驗證,結果顯示 ORC 系統在挾點上下的不同配置均可有效實現熱回收與發電,這些案例顯示在能源回收、軸功輸出與冷公用流體用量減少方面皆有顯著改善。
This study develops an algebraic optimization method for integrating Organic Rankine Cycle (ORC) systems into industrial processes to enhance energy efficiency and recover low-grade heat. The proposed approach analyzes the Grand Composite Curve (GCC) to identify available heat sources and determine optimal evaporation and condensation temperatures for ORC design. Three integration scenarios are investigated: sub-pinch integration without absorption limits, sub-pinch with absorption constraints (in and out of pockets), and supra-pinch integration. Results show that the proposed method achieves comparable or superior performance to traditional pinch-based iterative methods and mathematical programming approaches. The ORC system is modeled using unified phase-change heat exchangers to minimize equipment count and improve cost-effectiveness. For cases involving pocket integration, the method effectively reduces cooling utility demand while maximizing shaft work. A graphical algebraic approach simplifies the optimization process by solving linear equations without iterative drawing of new GCCs, significantly lowering the entry barrier compared to conventional methods. The results validate that the proposed strategy is suitable for heat-to-power integration and provides a systematic, visual, and practical framework for improving process energy utilization.
[1] Hannah Ritchie, Pablo Rosado, and Max Roser (2019) - “Access to Energy” Published online at OurWorldinData.org.
[2] International Energy Agency. (2023). World Energy Outlook 2023. International Energy Agency.
[3] International Energy Agency. (2024). World Energy Outlook 2024. International Energy Agency.
[4] International Energy Agency. (2020). World Energy Outlook 2020. International Energy Agency.
[5] International Energy Agency. (2021). Net zero by 2050: A roadmap for the global energy sector.
[6] Klemeš, J. J., Varbanov, P. S., & Pierucci, S. (2010). Process integration for energy and water saving, increasing efficiency and reducing environmental impact. Applied Thermal Engineering, 30(16), 2265–2269.
[7] Varbanov, P. S., & Seferlis, P. (2014). Process innovation through Integration approaches at multiple scales: a perspective. Clean Technologies and Environmental Policy, 16(7), 1229–1234.
[8] Kemp, I. C., & Shiun Lim, J. (2020). Pinch analysis for energy and carbon footprint reduction : user guide to process integration for the efficient use of energy / Ian C. Kemp, Jeng Shiun Lim. (3rd edition.). Butterworth-Heinemann.
[9] Ong, B. H. Y., Walmsley, T. G., Atkins, M. J., & Walmsley, M. R. W. (2017). Total site mass, heat and power integration using process integration and process graph. Journal of Cleaner Production, 167, 32–43.
[10] Chu, Z., Zhang, N., & Smith, R. (2022). Modelling and integration of multi-parallel organic Rankine Cycles into total site. Energy (Oxford), 260, 124985-.
[11] Jouhara, H., Khordehgah, N., Almahmoud, S., Delpech, B., Chauhan, A., & Tassou, S. A. (2018). Waste heat recovery technologies and applications. Thermal Science and Engineering Progress, 6, 268–289.
[12] Liu, S., Ma, G., Lv, Y., & Xu, S. (2024). Review on heat pump energy recovery technologies and their integrated systems for building ventilation. Building and Environment, 248, 111067-.
[13] Bijan Seyed Sadjjadi, Jan-Niklas Gerdes, & Alexander Sauer. (2023). Energy flexible heat pumps in industrial energy systems: A review Energy flexible heat pumps in industrial energy systems: A review. Energy Reports, 9, 386–394.
[14] Franklin R. Martínez, Emiliano Borri, Saranprabhu Mani Kala, Svetlana Ushak, & Luisa F. Cabeza. (2025). Phase change materials for thermal energy storage in industrial applications Phase change materials for thermal energy storage in industrial applications. Heliyon, 11(1), e41025-.
[15] Buonomo, B., Rita Golia, M., Manca, O., & Nardini, S. (2024). A review on thermal energy storage with phase change materials enhanced by metal foams. Thermal Science and Engineering Progress, 53, 102732-.
[16] Duy, D. T., Duy, V. N., Tan, N. T., Dien, V. M., & Binh, P. H. (2025). A comprehensive review of advances in thermoelectric generators: Novel materials and enhanced applications for sustainable transportation. International Journal of Thermofluids, 25, 100996-.
[17] Jiménez-García, J. C., Ruiz, A., Pacheco-Reyes, A., & Rivera, W. (2023). A Comprehensive Review of Organic Rankine Cycles. Processes, 11(7), 1982-.
[18] Dokl, M., Kravanja, Z., & Čuček, L. (2022). Techno-Economic Optimization of a Low-Temperature Organic Rankine System Driven by Multiple Heat Sources. Frontiers in Sustainability (Lausanne), 3.
[19] Ja’fari, M., Khan, M. I., Al-Ghamdi, S. G., Jaworski, A. J., & Asfand, F. (2023). Waste heat recovery in iron and steel industry using organic Rankine cycles. Chemical Engineering Journal (Lausanne, Switzerland : 1996), 477, 146925-.
[20] Anurag Kumar, & Dibakar Rakshit. (2021). A critical review on waste heat recovery utilization with special focus on Organic Rankine Cycle applications A critical review on waste heat recovery utilization with special focus on Organic Rankine Cycle applications. Cleaner Engineering and Technology, 5, 100292-.
[21] Lecompte, S., Huisseune, H., van den Broek, M., Vanslambrouck, B., & De Paepe, M. (2015). Review of organic Rankine cycle (ORC) architectures for waste heat recovery. Renewable & Sustainable Energy Reviews, 47, 448–461.
[22] Linnhoff, B., Townsend, D., Boland, D., Hewitt, G. F., Thomas, B. E. A., Guy, A. R., & Marsland, R. H. (1982). A user guide on process integration for the efficient use of energy. Rugby, UK: Institution of Chemical Engineers.
[23] Townsend, D. W., & Linnhoff, B. (1983). Heat and power networks in process design. Part I: Criteria for placement of heat engines and heat pumps in process networks. AIChE Journal, 29(5), 742–748.
[24] Desai, N. B., & Bandyopadhyay, S. (2009). Process integration of organic Rankine cycle. Energy (Oxford), 34(10), 1674–1686.
[25] Quoilin, S., Broek, M. V. D., Declaye, S., Dewallef, P., & Lemort, V. (2013). Techno-economic survey of Organic Rankine Cycle (ORC) systems. Renewable & Sustainable Energy Reviews, 22, 168–186.
[26] Chen, H., Goswami, D. Y., & Stefanakos, E. K. (2010). A review of thermodynamic cycles and working fluids for the conversion of low-grade heat. Renewable & Sustainable Energy Reviews, 14(9), 3059–3067.
[27] Sun, J., & Peng, B. (2025). Experimental study on steady-state operation of organic Rankine cycle system under different operating conditions. Scientific Reports, 15(1), 1041–18.
[28] Hung, T. C., Shai, T. Y., & Wang, S. K. (1997). A review of organic rankine cycles (ORCs) for the recovery of low-grade waste heat. Energy (Oxford), 22(7), 661–667.
[29] Liu, B.-T., Chien, K.-H., & Wang, C.-C. (2004). Effect of working fluids on organic Rankine cycle for waste heat recovery. Energy (Oxford), 29(8), 1207–1217.
[30] Liu, G., Zhou, H., Shen, R., & Feng, X. (2014). A graphical method for integrating work exchange network. Applied Energy, 114, 588–599.
[31] Guo, C., Du, X., Yang, L., & Yang, Y. (2014). Performance analysis of organic Rankine cycle based on location of heat transfer pinch point in evaporator. Applied Thermal Engineering, 62(1), 176–186.
[32] Klemeš, J. J., & Kravanja, Z. (2013). Forty years of Heat Integration: Pinch Analysis (PA) and Mathematical Programming (MP). Current Opinion in Chemical Engineering, 2(4), 461–474.
[33] Yee, T. F., & Grossmann, I. E. (1990). Simultaneous optimization models for heat integration—II. Heat exchanger network synthesis. Computers & Chemical Engineering, 14(10), 1165–1184.
[34] Chen, C.-L., Chang, F.-Y., Chao, T.-H., Chen, H.-C., & Lee, J.-Y. (2014). Heat-Exchanger Network Synthesis Involving Organic Rankine Cycle for Waste Heat Recovery. Industrial & Engineering Chemistry Research, 53(44), 16924–16936.
[35] Yu, H., Eason, J., Biegler, L. T., & Feng, X. (2017). Process integration and superstructure optimization of Organic Rankine Cycles (ORCs) with heat exchanger network synthesis. Computers & Chemical Engineering, 107, 257–270.
[36] Elsido, C., Mian, A., & Martelli, E. (2017). A systematic methodology for the techno-economic optimization of Organic Rankine Cycles. Energy Procedia, 129, 26–33.
[37] Kermani, M., Wallerand, A. S., Kantor, I. D., & Maréchal, F. (2018). Generic superstructure synthesis of organic Rankine cycles for waste heat recovery in industrial processes. Applied Energy, 212, 1203–1225.
[38] Dong, X., Liao, Z., Sun, J., Huang, Z., Jiang, B., Wang, J., & Yang, Y. (2020). Simultaneous Optimization of a Heat Exchanger Network and Operating Conditions of Organic Rankine Cycle. Industrial & Engineering Chemistry Research, 59(25), 11596–11609.
[39] Xu, Y., Wang, L., Chen, Y., Ye, S., & Huang, W. (2020). Simultaneous Optimization Method for Directly Integrating ORC with HEN to Achieve Exergy-Economy Multiobjective. Industrial & Engineering Chemistry Research, 59(49), 21488–21501.
[40] Hipolito-Valencia, B. J.; Rubio-Castro, E.; Ponce-Ortega, J. M.; Serna-Gonzalez, M.; Napoles-Rivera, F.; El-Halwagi, M. M., Optimal integration of organic Rankine cycles with industrial processes. Energy Convers. Manage. 2013, 73, 285-302.
[41] Smith, R. (Robin). (2005). Chemical process design and integration / Robin Smith. Wiley.
[42] Weber, R. S., Askander, J., & Barclay, J. (2020). The Scaling Economics of Small Unit Operations. ResearchGate
[43] Feng, Y., Zhang, Y., Li, B., Yang, J., & Shi, Y. (2015). Comparison between regenerative organic Rankine cycle (RORC) and basic organic Rankine cycle (BORC) based on thermoeconomic multi-objective optimization considering exergy efficiency and levelized energy cost (LEC). Energy Conversion and Management, 96, 58–71.