| 研究生: |
莊孟欣 Zhuang, Meng-Xin |
|---|---|
| 論文名稱: |
研製環境友善可撓曲鈣鈦礦太陽能電池 Preparation of Environmental-friendly Flexible Perovskite Solar Cells |
| 指導教授: |
王鴻博
Wang, Hong-Paul |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 環境工程學系 Department of Environmental Engineering |
| 論文出版年: | 2017 |
| 畢業學年度: | 105 |
| 語文別: | 英文 |
| 論文頁數: | 132 |
| 中文關鍵詞: | 鈣鈦礦太陽能電池 、電子傳輸層 、PbI2回收 、抗水氣PSCs製程 |
| 外文關鍵詞: | Perovskite solar cell, electron transport layer, recovery of PbI2, moisture-resisted PSCs |
| 相關次數: | 點閱:112 下載:7 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
受全球暖化與氣候變遷的影響,2015年聯合國通過巴黎協議,以推展展綠色能源,從而減少CO2之排放量。近年,鈣鈦礦太陽能電池(perovskite solar cells (PSCs))發展迅速,尤其具高效率與低製備成本的特點,使其成為太陽能研發焦點。本研究重點是製備低成本、環境友善、製程簡單、及可撓曲之PSCs,主要研究工作包括:(I)研究低溫製程之TiO2緻密(c-TiO2)層,作為PSCs之電子傳輸層;(II)在烷類非極性溶劑製備鈣鈦礦層,以克服水氣的影響;(III)回收廢棄PSCs之PbI2及FTO導電玻璃;(IV)以c-TiO2層與碳電極製備可撓曲式PSCs,提升應用性。
SEM顯示以0.2 M TiCl4製備之c-TiO2層具較高覆蓋率及厚度(28 nm),由光致螢光光譜(PL)分析得知厚度28 nm的c-TiO2層有較低的螢光強度,因而降低光電子、電洞再結合速率。控制TiO2與乙醇的稀釋比例(2/6),可獲TO2孔洞層(p-TO2)較有利厚度478 nm,使具較佳光吸收性及光伏表現。PSCs製備中鈣鈦礦層生成過程對水氣相當敏感,可能影響鈣鈦礦層的結晶性與覆蓋率,因此,另以烷類非極性溶劑製備鈣鈦礦層,達到與水氣隔絕的效果。SEM指出在庚烷中形成的鈣鈦礦層具較高覆蓋性。XRD與PL分析結果顯示在庚烷中製備之鈣鈦礦層有較佳的結晶性與較低之電子、電洞再結合速率。以此方法可將PSCs之光電轉化效率(PCE)從2.0%提升至6.1%,進一步改善烷類非極性溶劑中鈣鈦礦前驅物濃度與加熱溫度,可將PCE提升至8.75%。此PSCs之新穎分層製備方法,使之易於在一般環境下塗佈於向陽表面(例如:屋頂、牆或窗),增加廣泛應用性。另開發以水萃取分離回收廢棄PSCs中之PbI2及FTO導電玻璃之方法,減少鉛之環境負面衝擊;更以c-TO2層與碳電極製備可撓曲式PSCs,增加其應用性。
Mainly due to the negative impact from global warming and climate change, the United Nations passed the Paris Agreement that focused on reducing CO2 emissions by increasing green energy utilization. Recently, research and development related to perovskite solar cells (PSCs) with the advantages of high power conversion efficiency (PCE) and low manufacturing cost have been growing very rapidly. Thus in the present work, a feasibility study for preparation of low-cost, simple process, and environmental-friendly flexible perovskite solar cells was carried out. The major research work include: (1) Preparation of better TiO2 electron transport layer for PSCs; (2) A feasibility study for preparation of moisture-resisted perovskite layers in PSCs; (3) Recovery of PbI2 and FTO conducting glass from spent PSCs; and (4) Preparation of flexible PSCs.
Experimentally, a desired thickness (25 nm) for the c-TiO2 layer can be obtained when 0.2 M of TiCl4 were used, and the well dispersed TiO2 layer on FTO with a relatively low luminescence intensity are observed. The p-TiO2 layer was also prepared by spin-coating with the TiO2 paste at the preferred TiO2/ethanol (w/w) ratio of 2/6. More perovskite can be adsorbed on the p-TiO2 layer for a better harvesting light. The less perturbed (by moisture) perovskite layer having a better crystallinity and low photoluminescence intensity, possibly due to the fact of the reduced electron-hole recombination rate during illumination, accordingly, gives a rise to its PSC performance, and the PCE can be increased to 6.1% (from 2.0%). More effectively, the PSC comprised of the carbon/CH3NH3PbI3/porous TiO2/compact TiO2/FTO layers has a high PCE up to 8.75% as the perovskite (CH3NH3PbI3) layer was formed by the way of the new procedure especially in the presence of humidity. With this approach, PSCs can be installed by means of layer-by-layer coating onto any sunlight accessible surfaces such as outdoor windows, walls, and roofs. In addition, to reduce the environmental negative impacts from the lead toxic metal, a method has been developed to recover PbI2 from the spent PSC. Methods for preparation of flexible PSCs using the c-TiO2 layer and carbon electrode were also developed for wide applications.
Babayigit, A., Ethirajan, A., Muller, M., & Conings, B. (2016). Toxicity of organometal halide perovskite solar cells. Nature materials, 15(3), 247-251.
Babayigit, A., Thanh, D. D., Ethirajan, A., Manca, J., Muller, M., Boyen, H.-G., & Conings, B. (2016). Assessing the toxicity of Pb-and Sn-based perovskite solar cells in model organism Danio rerio. Scientific reports, 6.
Badawy, W. A. (2015). A review on solar cells from Si-single crystals to porous materials and quantum dots. Journal of advanced research, 6(2), 123-132.
Bagher, A. M., Vahid, M. M. A., & Mohsen, M. (2015). Types of solar cells and application. American Journal of Optics and Photonics, 3(5), 94-113.
Başol, B. M., & McCandless, B. (2014). Brief review of cadmium telluride-based photovoltaic technologies. Journal of Photonics for Energy, 4(1), 040996-040996.
Battaglia, C., Cuevas, A., & De Wolf, S. (2016). High-efficiency crystalline silicon solar cells: status and perspectives. Energy & Environmental Science, 9(5), 1552-1576.
Binek, A., Petrus, M. L., Huber, N., Bristow, H., Hu, Y., Bein, T., & Docampo, P. (2016). Recycling perovskite solar cells to avoid lead waste. ACS applied materials & interfaces, 8(20), 12881-12886.
Bonnet, D., & Rabenhorst, H. (1972). New results on the development of a thin-film p-CdTe-n-CdS heterojunction solar cell. Paper presented at the Photovoltaic Specialists Conference, 9 th, Silver Spring, Md.
Brown, G. F., & Wu, J. (2009). Third generation photovoltaics. Laser & Photonics Reviews, 3(4), 394-405.
Burschka, J., Pellet, N., Moon, S.-J., Humphry-Baker, R., Gao, P., Nazeeruddin, M. K., & Grätzel, M. (2013). Sequential deposition as a route to high-performance perovskite-sensitized solar cells. nature, 499(7458), 316-319.
Carlson, D. E., & Wronski, C. R. (1976). Amorphous silicon solar cell. Applied Physics Letters, 28(11), 671-673.
Chapin, D. M., Fuller, C., & Pearson, G. (1954). A new silicon p‐n junction photocell for converting solar radiation into electrical power. Journal of Applied Physics, 25(5), 676-677.
Chen, L.-C., Chen, C.-C., Chen, J.-C., & Wu, C.-G. (2015). Annealing effects on high-performance CH 3 NH 3 PbI 3 perovskite solar cells prepared by solution-process. Solar Energy, 122, 1047-1051.
Chisholm, J., Portmann, P., & Roche, J. (1955). Investigations of angular scattering and multipath properties of tropospheric propagation of short radio waves beyond the horizon. Proceedings of the IRE, 43(10), 1317-1335.
Chopra, K. (2011). Thin Film Solar Cells-(A Status Review). PVTC 2011.
Christians, J. A., Miranda Herrera, P. A., & Kamat, P. V. (2015). Transformation of the excited state and photovoltaic efficiency of CH3NH3PbI3 perovskite upon controlled exposure to humidified air. Journal of the American Chemical Society, 137(4), 1530-1538.
Cojocaru, L., Uchida, S., Sanehira, Y., Nakazaki, J., Kubo, T., & Segawa, H. (2015). Surface Treatment of the Compact TiO2 Layer for Efficient Planar Heterojunction Perovskite Solar Cells. Chemistry Letters, 44(5), 674-676.
Conibeer, G. (2007). Third-generation photovoltaics. Materials today, 10(11), 42-50.
Dao, Q.-D., Tsuji, R., Fujii, A., & Ozaki, M. (2017). Study on degradation mechanism of perovskite solar cell and their recovering effects by introducing CH 3 NH 3 I layers. Organic Electronics, 43, 229-234.
Devaney, W., Chen, W., Stewart, J., & Mickelsen, R. (1990). Structure and properties of high efficiency ZnO/CdZnS/CuInGaSe/sub 2/solar cells. IEEE Transactions on Electron Devices, 37(2), 428-433.
Elumalai, N. K., Mahmud, M. A., Wang, D., & Uddin, A. (2016). Perovskite Solar Cells: Progress and Advancements. Energies, 9(11), 861.
Fang, Z., Wang, X. C., Wu, H. C., & Zhao, C. Z. (2011). Achievements and challenges of CdS/CdTe solar cells. International Journal of Photoenergy, 2011.
Fowler, M. (1997). The photoelectric effect. The Photoelectric Effect.
Fritts, C. E. (1883). On a new form of selenium cell, and some electrical discoveries made by its use. American Journal of Science(156), 465-472.
Gao, H., Bao, C., Li, F., Yu, T., Yang, J., Zhu, W., . . . Zou, Z. (2015). Nucleation and crystal growth of organic–inorganic lead halide perovskites under different relative humidity. ACS applied materials & interfaces, 7(17), 9110-9117.
Gifford, J. (2015). Solar Frontier hits 22.3% on CIGS cell. PV Mag.
Gong, J., Sumathy, K., Qiao, Q., & Zhou, Z. (2017). Review on dye-sensitized solar cells (DSSCs): Advanced techniques and research trends. Renewable and Sustainable Energy Reviews, 68, 234-246.
Green, M. A. (2001). Crystalline silicon solar cells. Clean Electricity from Photovoltaics, 1, 149.
Green, M. A. (2009). The path to 25% silicon solar cell efficiency: history of silicon cell evolution. Progress in Photovoltaics: Research and Applications, 17(3), 183-189.
Hegedus, S. S., & Shafarman, W. N. (2004). Thin‐film solar cells: device measurements and analysis. Progress in Photovoltaics: Research and Applications, 12(2‐3), 155-176.
Im, J.-H., Lee, C.-R., Lee, J.-W., Park, S.-W., & Park, N.-G. (2011). 6.5% efficient perovskite quantum-dot-sensitized solar cell. Nanoscale, 3(10), 4088-4093.
Jackson, P., Hariskos, D., Wuerz, R., Kiowski, O., Bauer, A., Friedlmeier, T. M., & Powalla, M. (2015). Properties of Cu (In, Ga) Se2 solar cells with new record efficiencies up to 21.7%. physica status solidi (RRL)-Rapid Research Letters, 9(1), 28-31.
Kazmerski, L., White, F., & Morgan, G. (1976). Thin‐film CuInSe2/CdS heterojunction solar cells. Applied Physics Letters, 29(4), 268-270.
Ke, J.-C., Wang, Y.-H., Chen, K.-L., & Huang, C.-J. (2017). Effect of temperature annealing treatments and acceptors in CH 3 NH 3 PbI 3 perovskite solar cell fabrication. Journal of Alloys and Compounds, 695, 2453-2457.
Kim, H.-S., Lee, C.-R., Im, J.-H., Lee, K.-B., Moehl, T., Marchioro, A., . . . Moser, J. E. (2012). Lead iodide perovskite sensitized all-solid-state submicron thin film mesoscopic solar cell with efficiency exceeding 9%. Scientific reports, 2, 591.
Kojima, A., Teshima, K., Shirai, Y., & Miyasaka, T. (2009). Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. Journal of the American Chemical Society, 131(17), 6050-6051.
Kumar, S. G., & Rao, K. K. (2014). Physics and chemistry of CdTe/CdS thin film heterojunction photovoltaic devices: fundamental and critical aspects. Energy & Environmental Science, 7(1), 45-102.
Kuribayashi, K., Matsumoto, H., Uda, H., Komatsu, Y., Nakano, A., & Ikegami, S. (1983). Preparation of low resistance contact electrode in screen printed CdS/CdTe solar cell. Japanese Journal of Applied Physics, 22(12R), 1828.
Laemmle, A., Wuerz, R., & Powalla, M. (2013). Efficiency enhancement of Cu (In, Ga) Se2 thin‐film solar cells by a post‐deposition treatment with potassium fluoride. physica status solidi (RRL)-Rapid Research Letters, 7(9), 631-634.
Lee, T. D., & Ebong, A. U. (2016). A review of thin film solar cell technologies and challenges. Renewable and Sustainable Energy Reviews.
Liu, D., Liu, C., Wu, L., Li, W., Chen, F., Xiao, B., . . . Feng, L. (2016). Highly reproducible perovskite solar cells with excellent CH 3 NH 3 PbI 3− x Cl x film morphology fabricated via high precursor concentration. RSC Advances, 6(56), 51279-51285.
Liu, M., Johnston, M. B., & Snaith, H. J. (2013). Efficient planar heterojunction perovskite solar cells by vapour deposition. nature, 501(7467), 395-398.
Mandelkorn, J., McAfee, C., Kesperis, J., Schwartz, L., & Pharo, W. (1962). Fabrication and Characteristics of Phosphorous‐Diffused Silicon Solar Cells. Journal of the Electrochemical Society, 109(4), 313-318.
McGehee, M. (2011). An Overview of Solar Cell Technology. Center for Advanced Molecular Photovoltaics Precourt Institute, Stanford University, http://web. stanford. edu/group/mcgehee/presentations/McGehee2011. pdf.
Meakin, J. D. (2004). Photovoltaic conversion. Modern Physics Web Essay, 2.
Mehmood, U., Rahman, S.-u., Harrabi, K., Hussein, I. A., & Reddy, B. (2014). Recent advances in dye sensitized solar cells. Advances in Materials Science and Engineering, 2014.
Nakada, T., Kume, T., & Kunioka, A. (1998). Superstrate-type CuInSe2-based thin film solar cells by a low-temperature process using sodium compounds. Solar energy materials and solar cells, 50(1-4), 97-103.
Nakada, T., Kume, T., Mise, T., & Kunioka, A. (1998). Superstrate-Type Cu (In, Ga) Se2 thin film solar cells with ZnO buffer layers. Japanese Journal of Applied Physics, 37(5A), L499.
Nakada, T., Okano, N., Tanaka, Y., Fukuda, H., & Kunioka, A. (1994). Superstrate-type CuInSe/sub 2/solar cells with chemically deposited CdS window layers. Paper presented at the Photovoltaic Energy Conversion, 1994., Conference Record of the Twenty Fourth. IEEE Photovoltaic Specialists Conference-1994, 1994 IEEE First World Conference on.
O’regan, B., & Grfitzeli, M. (1991). A low-cost, high-efficiency solar cell based on dye-sensitized. nature, 353(6346), 737-740.
Ohl, R. S. (1946). Light-sensitive electric device: Google Patents.
Perez, M., & Perez, R. (2015). UPDATE 2015--A FUNDAMENTAL LOOK AT SUPPLY SIDE ENERGY RESERVES FOR THE PLANET. Natural Gas, 2(9), 215.
Pericherla, L. (2013). Designing of Amorphous Silicon Solar Cells for Optimal Photovoltaic Performance. Charles Darwin University.
Rhodes, C. J. (2010). Solar energy: principles and possibilities. Science progress, 93(1), 37-112.
Romeo, A., Terheggen, M., Abou‐Ras, D., Bätzner, D., Haug, F. J., Kälin, M., . . . Tiwari, A. (2004). Development of thin‐film Cu (In, Ga) Se2 and CdTe solar cells. Progress in Photovoltaics: Research and Applications, 12(2‐3), 93-111.
Sah, C.-T., Noyce, R. N., & Shockley, W. (1957). Carrier generation and recombination in pn junctions and pn junction characteristics. Proceedings of the IRE, 45(9), 1228-1243.
Sai, H., 齋均, Matsui, T., 松井, 卓矢, Koida, T., . . . 浩司. (2015). Triple-junction thin-film silicon solar cell fabricated on periodically textured substrate with a stabilized efficiency of 13.6%. Applied Physics Letters, 106(21), 213902.
Saliba, M., Matsui, T., Seo, J.-Y., Domanski, K., Correa-Baena, J.-P., Nazeeruddin, M. K., . . . Hagfeldt, A. (2016). Cesium-containing triple cation perovskite solar cells: improved stability, reproducibility and high efficiency. Energy & Environmental Science, 9(6), 1989-1997.
Sharma, S., Jain, K. K., & Sharma, A. (2015). Solar cells: in research and applications—a review. Materials Sciences and Applications, 6(12), 1145-1155.
Shi, D., Zeng, Y., & Shen, W. (2015). Perovskite/c-Si tandem solar cell with inverted nanopyramids: realizing high efficiency by controllable light trapping. Scientific reports, 5, 16504.
Singh, U. P., & Patra, S. P. (2010). Progress in Polycrystalline Thin-Film Cu (In, Ga) Solar Cells. International Journal of Photoenergy, 2010.
Staebler, D., & Wronski, C. (1977). Reversible conductivity changes in discharge‐produced amorphous Si. Applied Physics Letters, 31(4), 292-294.
Sun, S., Salim, T., Mathews, N., Duchamp, M., Boothroyd, C., Xing, G., . . . Lam, Y. M. (2014). The origin of high efficiency in low-temperature solution-processable bilayer organometal halide hybrid solar cells. Energy & Environmental Science, 7(1), 399-407.
UNFCCC, V. (2015). Adoption of the Paris Agreement. Proposal by the President (Draft Decision), United Nations Office, Geneva (Switzerland), 32.
Yang, G., Tao, H., Qin, P., Ke, W., & Fang, G. (2016). Recent progress in electron transport layers for efficient perovskite solar cells. Journal of Materials Chemistry A, 4(11), 3970-3990.
Yang, S., Fu, W., Zhang, Z., Chen, H., & Li, C.-Z. (2017). Recent advances in perovskite solar cells: efficiency, stability and lead-free perovskite. Journal of Materials Chemistry A.
Zekry, A., & Al-Mazroo, A. Y. (1996). A distributed SPICE-model of a solar cell. IEEE Transactions on Electron Devices, 43(5), 691-700.
Zhao, J., Wang, A., & Green, M. A. (1999). 24· 5% Efficiency silicon PERT cells on MCZ substrates and 24· 7% efficiency PERL cells on FZ substrates. Progress in Photovoltaics: Research and Applications, 7(6), 471-474.
Zuo, C., & Ding, L. (2014). An 80.11% FF record achieved for perovskite solar cells by using the NH 4 Cl additive. Nanoscale, 6(17), 9935-9938.