| 研究生: |
王一修 Wang, Yi-Hsiu |
|---|---|
| 論文名稱: |
氧化亞銅複合還原氧化石墨烯於超級電容的應用 Cu2O/Reduced Graphene Oxide Composites for Supercapacitor Applications |
| 指導教授: |
陳巧貞
Chen, Chiao-Chen |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 化學系 Department of Chemistry |
| 論文出版年: | 2020 |
| 畢業學年度: | 108 |
| 語文別: | 中文 |
| 論文頁數: | 81 |
| 中文關鍵詞: | 氧化亞銅 、還原氧化石墨烯 、超級電容 |
| 外文關鍵詞: | cuprous oxide, graphene composites, supercapacitors |
| 相關次數: | 點閱:67 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
由於全球快速發展與社會變遷,在能量的產生與儲存應用上之需求快速增加,傳統的化石燃料因其在環境污染與存量及其開發過程所存在的隱憂,使其替代方案諸如太陽能電池、燃料電池、超級電容等能量的生產與儲存的方案備受矚目。
自石墨烯材料的合成與應用機制被提出以來,碳基材料在各領域的應用都引起相當多的研究興趣,其中因為石墨烯具有高比表面積與導電、導熱等特性,在電化學領域,尤其儲能材料之應用層面在近年引起相當大的關注,在這個領域有兩個主要方向,其一是以高能量密度為主的電池,二則是高功率密度的電容器,提升電池的功率密度或電容的能量密度是對此類材料應用研究的重心。本研究中使用銅作為電容材料,經由水熱反應製備銅氧化物,將之與石墨烯複合形成複合材料,研究中探討水熱反應過程的酸鹼度與反應時間對樣品的表面形貌之影響,並研究不同參數製備的電容材料所表現的電化學特性。
實驗結果顯示氧化石墨烯在pH 12的水熱環境製備之還原氧化石墨烯(reduced graphene oxide,RGO)具有最高的電容表現能力。研究水熱過程酸鹼度對銅氧化物表面形貌的影響結果,可以發現提升環境偏向強鹼可以生成尺寸更小的銅氧化物,提供更多的表面積而給出更高的電容表現。銅氧化物複合還原氧化石墨烯的樣品中則可以觀察到樣品經過複合後能提供更多的電容表現,並且水熱時間的增長對樣品的電化學性能有正向增益。
Due to the rapid global development and social changes, energy storage devices have attracted tremendous attention and were expected to play important roles such as supercapacitors and lithium-ion batteries. Compare to batteries, supercapacitors have higher power density and charging/discharging period. However, the energy density of supercapacitors still lower than the behavior of batteries. In this regard, increasing the energy density of supercapacitors is the main theme of current research. The metal oxide is expected to play roles in enhancing the capacity but suffers from low conductivity. Graphene materials have been considered to have the potential to solve this problem. In addition, graphene-based composites materials are expected to have more stability, which leads to higher cycling retention.
In this study, Cu2O has been chosen as an electrode material and obtain Cu2O/RGO composite through the one-step hydrothermal process. By adjusting the base concentration, reduced graphene oxide (RGO) and Cu2O/RGO composites were synthesized and subjected to electrochemical examinations. Raman spectroscopy and X-ray diffraction spectra were applied to confirm the formation of RGO. In addition, the ID/IG ratio was determined to verify the reduced degree of RGO. The RGO prepared at pH 12 showed the highest degree of reduction. X-ray photoelectron spectra revealed that the characterization peaks of the oxygen-containing functional groups decreased significantly in RGO samples prepared with the hydrothermal process at more basic conditions. After combined RGO and Cu2O, the XRD host lattice was confirmed to the cuprous oxide and led to higher ID/IG ratio in Raman spectra because of more disorder structure. Cyclic voltammetry measurements were carried out to examine the capacity of synthesized composite. It was found that electrodes made of the hybrid composite exhibited much higher capacitance than those of RGO prepared via 8 hours of hydrothermal process at pH 12. With the optimal synthesis parameters, Cu2O/RGO hybrid composites showed the best electrochemical behavior for energy storage with a capacitance of 1036 F/g.
1. Novoselov, K. S.; Geim, A. K.; Morozov, S. V.; Jiang, D.; Zhang, Y.; Dubonos, S. V.; Grigorieva, I. V.; Firsov, A. A., Electric field effect in atomically thin carbon films. Science 2004, 306, 666-669.
2. Ding, J.; Hu, W.; Paek, E.; Mitlin, D., Review of hybrid ion capacitors: from aqueous to lithium to sodium. Chem. Rev. 2018, 118, 6457-6498.
3. Wu, Z.-S.; Zhou, G.; Yin, L.-C.; Ren, W.; Li, F.; Cheng, H.-M., Graphene/metal oxide composite electrode materials for energy storage. Nano Energy 2012, 1, 107-131.
4. Chen, J.; Li, C.; Shi, G., Graphene materials for electrochemical capacitors. The Journal of Physical Chemistry Letters 2013, 4, 1244-1253.
5. Li, X.; Zhi, L., Graphene hybridization for energy storage applications. Chem. Soc. Rev. 2018, 47, 3189-3216.
6. de Heer, W. A.; Berger, C.; Wu, X.; First, P. N.; Conrad, E. H.; Li, X.; Li, T.; Sprinkle, M.; Hass, J.; Sadowski, M. L.; Potemski, M.; Martinez, G., Electronic confinement and coherence in patterned epitaxial graphene. Science 2006, 312, 1191-1196.
7. Bae, S.; Kim, H.; Lee, Y.; Xu, X.; Park, J.-S.; Zheng, Y.; Balakrishnan, J.; Lei, T.; Ri Kim, H.; Song, Y. I.; Kim, Y.-J.; Kim, K. S.; Özyilmaz, B.; Ahn, J.-H.; Hong, B. H.; Iijima, S., Roll-to-roll production of 30-inch graphene films for transparent electrodes. Nature Nanotechnology 2010, 5, 574-578.
8. Hummers, W. S.; Offeman, R. E., Preparation of graphitic oxide. J. Am. Chem. Soc. 1958, 80, 1339-1339.
9. Kim, K. S.; Zhao, Y.; Jang, H.; Lee, S. Y.; Kim, J. M.; Kim, K. S.; Ahn, J.-H.; Kim, P.; Choi, J.-Y.; Hong, B. H., Large-scale pattern growth of graphene films for stretchable transparent electrodes. Nature 2009, 457, 706-710.
10. Murugan, A. V.; Muraliganth, T.; Manthiram, A., Rapid, facile microwave-solvothermal synthesis of graphene nanosheets and their polyaniline nanocomposites for energy strorage. Chem. Mater. 2009, 21, 5004-5006.
11. Liu, L.; Zhang, H.; Mu, Y.; Bai, Y.; Wang, Y., Binary cobalt ferrite nanomesh arrays as the advanced binder-free electrode for applications in oxygen evolution reaction and supercapacitors. J. Power Sources 2016, 327, 599-609.
12. Stankovich, S.; Dikin, D. A.; Piner, R. D.; Kohlhaas, K. A.; Kleinhammes, A.; Jia, Y.; Wu, Y.; Nguyen, S. T.; Ruoff, R. S., Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide. Carbon 2007, 45, 1558-1565.
13. Zhao, H. Y.; Wang, Y. F.; Zeng, J. H., Hydrothermal synthesis of uniform cuprous oxide microcrystals with controlled morphology. Cryst. Growth Des. 2008, 8, 3731-3734.
14. Ma, D.; Liu, H.; Yang, H.; Fu, W.; Zhang, Y.; Yuan, M.; Sun, P.; Zhou, X., High pressure hydrothermal synthesis of cuprous oxide microstructures of novel morphologies. Mater. Chem. Phys. 2009, 116, 458-463.
15. Lan, X.; Zhang, J.; Gao, H.; Wang, T., Morphology-controlled hydrothermal synthesis and growth mechanism of microcrystal Cu2O. CrystEngComm 2011, 13, 633-636.
16. Kumar, R.; Rai, P.; Sharma, A., Facile synthesis of Cu2O microstructures and their morphology dependent electrochemical supercapacitor properties. RSC Adv. 2016, 6, 3815-3822.
17. Winter, M.; Brodd, R. J., What are batteries, fuel cells, and supercapacitors? Chem. Rev. 2004, 104, 4245-4270.
18. Hamann, C. H.; Hamnett, A.; Vielstich, W., Electrochemistry, 2nd. 2007.
19. Chen, Y.; Dai, G.; Gao, Q., Starch nanoparticles–graphene aerogels with high supercapacitor performance and efficient adsorption. ACS Sustain. Chem. Eng. 2019, 7, 14064-14073.
20. Chmiola, J.; Yushin, G.; Gogotsi, Y.; Portet, C.; Simon, P.; Taberna, P. L., Anomalous increase in carbon capacitance at pore sizes less than 1 nanometer. Science 2006, 313, 1760.
21. Akinwolemiwa, B.; Peng, C.; Chen, G. Z., Redox electrolytes in supercapacitors. J. Electrochem. Soc. 2015, 162, A5054-A5059.
22. Mishra, A. K.; Nayak, A. K.; Das, A. K.; Pradhan, D., Microwave-assisted solvothermal synthesis of cupric oxide nanostructures for high-performance supercapacitor. J. Phys. Chem. C 2018, 122, 11249-11261.
23. Kim, B. K.; Sy, S.; Yu, A.; Zhang, J., Electrochemical supercapacitors for energy storage and conversion. In Handbook of Clean Energy Systems, 2015; pp 1-25.
24. Chen, G. Z., Understanding supercapacitors based on nano-hybrid materials with interfacial conjugation. Prog. Nat. Sci. 2013, 23, 245-255.
25. Bard, A. J.; Faulkner, L. R., Electrochemical methods: fundamentals and applications. Wiley New York: 2001; Vol. 2.
26. Taberna, P. L.; Simon, P.; Fauvarque, J.-F., Electrochemical characteristics and impedance spectroscopy studies of carbon-carbon supercapacitors. J. Electrochem. Soc. 2003, 150, A292.
27. Khan, M.; Tahir, M. N.; Adil, S. F.; Khan, H. U.; Siddiqui, M. R. H.; Al-warthan, A. A.; Tremel, W., Graphene based metal and metal oxide nanocomposites: synthesis, properties and their applications. J. Mater. Chem. A 2015, 3, 18753-18808.
28. Joseph, S.; Kempaiah, D. M.; Benzigar, M. R.; Ilbeygi, H.; Singh, G.; Talapaneni, S. N.; Park, D.-H.; Vinu, A., Highly ordered mesoporous carbons with high specific surface area from carbonated soft drink for supercapacitor application. Microporous Mesoporous Mater. 2019, 280, 337-346.
29. Down, M. P.; Rowley-Neale, S. J.; Smith, G. C.; Banks, C. E., Fabrication of graphene oxide supercapacitor devices. ACS Appl. Energy Mater. 2018, 1, 707-714.
30. Lu, J.; Xu, W.; Li, S.; Liu, W.; Javed, M. S.; Liu, G.; Hu, C., Rational design of CuO nanostructures grown on carbon fiber fabrics with enhanced electrochemical performance for flexible supercapacitor. J. Mater. Sci. 2017, 53, 739-748.
31. Wang, K.; Dong, X.; Zhao, C.; Qian, X.; Xu, Y., Facile synthesis of Cu2O/CuO/RGO nanocomposite and its superior cyclability in supercapacitor. Electrochim. Acta 2015, 152, 433-442.
32. Zhang, W.; Yin, Z.; Chun, A.; Yoo, J.; Diao, G.; Kim, Y. S.; Piao, Y., Rose rock-shaped nano Cu2O anchored graphene for high-performance supercapacitors via solvothermal route. J. Power Sources 2016, 318, 66-75.
33. Wu, F.; Banerjee, S.; Li, H.; Myung, Y.; Banerjee, P., Indirect Phase Transformation of CuO to Cu2O on a Nanowire Surface. Langmuir 2016, 32, 4485-93.
34. Wang, Q.; Zhang, Y.; Xiao, J.; Jiang, H.; Hu, T.; Meng, C., Copper oxide/cuprous oxide/hierarchical porous biomass-derived carbon hybrid composites for high-performance supercapacitor electrode. J. Alloys Compd. 2019, 782, 1103-1113.
35. Chen, K.; Xue, D., pH-assisted crystallization of Cu2O: chemical reactions control the evolution from nanowires to polyhedra. CrystEngComm 2012, 14, 8068-8075.
36. Chen, S.; Zhu, J.; Wang, X., One-step synthesis of graphene−cobalt hydroxide nanocomposites and their electrochemical properties. J. Phys. Chem. C 2010, 114, 11829-11834.
37. Deng, M. J.; Song, C. Z.; Ho, P. J.; Wang, C. C.; Chen, J. M.; Lu, K. T., Three-dimensionally ordered macroporous Cu2O/Ni inverse opal electrodes for electrochemical supercapacitors. Phys. Chem. Chem. Phys. 2013, 15, 7479-83.
38. Dubal, D. P.; Gund, G. S.; Holze, R.; Lokhande, C. D., Mild chemical strategy to grow micro-roses and micro-woolen like arranged CuO nanosheets for high performance supercapacitors. J. Power Sources 2013, 242, 687-698.
39. Gao, H.; Xiao, F.; Ching, C. B.; Duan, H., High-performance asymmetric supercapacitor based on graphene hydrogel and nanostructured MnO2. ACS Appl. Mater. Interfaces 2012, 4, 2801-2810.
40. Li, W.; Bu, Y.; Jin, H.; Wang, J.; Zhang, W.; Wang, S.; Wang, J., The preparation of hierarchical flowerlike NiO/reduced graphene oxide composites for high performance supercapacitor applications. Energy Fuels 2013, 27, 6304-6310.
校內:2025-08-01公開