| 研究生: |
洪暉祐 Hung, Hui-Yu |
|---|---|
| 論文名稱: |
二茚并聯伸二苯之合成、結構分析及物性探討 Syntheses, Structural Analyses, and Physical Properties of Diindeno-fused Biphenylenes |
| 指導教授: |
吳耀庭
Wu, Yao-Ting |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 化學系 Department of Chemistry |
| 論文出版年: | 2019 |
| 畢業學年度: | 107 |
| 語文別: | 中文 |
| 論文頁數: | 79 |
| 中文關鍵詞: | 聯伸二苯 、二茚并聯伸二苯 、雙自由基性質 |
| 外文關鍵詞: | Biphenylenes, Diindeno-fused Biphenylenes, Biradical character |
| 相關次數: | 點閱:53 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
二茚并多環芳香烴 (Diindeno-fused arenes, DFAs)為自由基分子中較具代表性的例子,此類型分子可以藉由茚來延伸整個化合物的π共軛系統並增強其雙自由基性質。
本論文以聯伸二苯為主體成功合成3,12-二 基二茚并[2,1-a:2',1'-i]聯伸二苯 (15)、2,13-二 基二茚并[2,1-b:2',1'-h]聯伸二苯 (23)及3,10-二基二茚并[2,1-a:2',1'-f]聯伸二苯 (29),並利用X-ray單晶繞射分析化合物15的結構特性,發現其鍵長及HOMA值均傾向於形成雙自由基分子。從變溫1H NMR光譜中可以發現化合物15、23的雙自由基會因為加熱由反磁性的單重態基態轉變成順磁性的三重態激發態,導致光譜中的訊號會隨溫度升高逐漸變寬甚至消失。最後利用紫外-可見光光譜以及循環伏安法分析化合物15、23之光物理與電化學性質,並計算出最高電子佔有分子軌域 (HOMO)及最低電子未佔有分子軌域 (LUMO)之能隙。
Diindeno-fused arenes (DFAs) are representative examples of biradical arenes. The indeno can help extend the π-conjugated system which can enhance the biradical character of DFAs.
In this study, we introduced the syntheses and characterizations of three DFAs, 3,12-dimesityldiindeno[2,1-a:2',1'-i]biphenylene (15), 2,13-dimesityl diindeno[2,1-b:2',1'-h]biphenylene (23), and 3,10-dimesityldiindeno[2,1-a:2',1'-f]biphenylene (29). The molecular structure and aromaticity was revealed by single-crystal X-ray diffraction. From variable-temperature 1H nuclear magnetic resonance (VT 1H NMR), the biradical properties of compound 15 and compound 23 were confirmed. Finally, the photophysical and electrochemical properties were measured by UV-vis spectroscopy and cyclic voltammetry.
1.Clar, E. The Aromatic Sextet; Wiley-VCH: London, 1972.
2.Krygowski, T. M.; Ejsmont, K.; Stepień, B. T.; Cyrański, M. K.; Poater, J.; Solá, M. J. Org. Chem. 2004, 69, 6634-6640.
3.Fawcett, J. K.; Trotter, J. Acta Cryst. 1966, 20, 87-93.
4.Lothrop, W. C. J. Am. Chem. Soc. 1941, 63, 1187-1191.
5.Berris, B. C.; Lai, Y.-H.; Vollhardt, K. P. C. J. Chem. Soc., Chem. Commun. 1982, 953-954. (b) Berris, B. C.; Hovakeemian, G. H.; Lai, Y.-H.; Mestdagh, H.; Vollhardt, K. P. C. J. Am. Chem. Soc. 1985, 107, 5670-5687.
6.Wang, S.-L.; Pan, M.-L.; Su, W.-S.; Wu, Y.-T. Angew. Chem. Int. Ed. 2017, 56, 14694-14697.
7.(a) Döhnert, D.; Koutecký, J. J. Am. Chem. Soc. 1980, 102, 1789-1796. (b) Yamaguchi, K.; Kawakami, T.; Takano, Y.; Kitagawa,Y.; Yamashita, Y.; Fujita, H. Int. J. Quantum Chem. 2002, 90, 370-385.
8.(a) Motta, S. D.; Negri, F.; Fazzi, D.; Castiglioni, C.; Canesi, E. V. J. Phys. Chem. Lett. 2010, 1, 3334-3339. (b) Sun, Z.; Ye, Q.; Chi, C.; Wu, J. Chem. Soc. Rev. 2012, 41, 7857-7889.
9.Ni, Y.; Lee, S.; Son, M.; Aratani, N.; Ishida, M.; Samanta, A.; Yamada, H.; Chang, Y.-T.; Furuta, H.; Kim, D.; Wu, J. Angew. Chem. Int. Ed. 2016, 55, 2815-2819.
10.(a) Varnavski, O.; Abeyasinghe, N.; Aragó, J.; Serrano-Pérez, J. J.; Ortí, E.; Navarrete, J. T. L.; Takimiya, K.; Casanova, D.; Casado, J.; Goodson, T. J. Phys. Chem. Lett. 2015, 6, 1375-1384. (b) Minami, T.; Nakano, M. J. Phys. Chem. Lett. 2012, 3, 145-150. (c) Wilson, M. W. B.; Rao, A.; Clark, J.; Kumar, R. S. S.; Brida, D.; Cerullo, G.; Friend, R. H. J. Am. Chem. Soc. 2011, 133, 11830-11833.
11.(a) Shimizu, A.; Tobe, Y. Angew. Chem. Int. Ed. 2011, 50, 6906-6010. (b) Chase D. T.; Fix, A. G.; Rose, B. D.; Weber, C. D.; Nobusue, S.; Stockwell, C. E. Zakharov, L. N.; Lonergan, M. C.; Haley, M. M. Angew. Chem. Int. Ed. 2011, 50, 11103-11106. (c) Shimizu, A.; Kishi, R.; Nakano, M.; Shiomi, D.; Sato, K.; Takui, T.; Hisaki, I.; Miyata, M.; Tobe, Y. Angew. Chem. Int. Ed. 2013, 52, 6076-6079.
12.Rudebusch, G. E.; Zafra, J. L.; Jorner, K.; Fukuda, K.; Marshall, J. L.; Arrechea-Marcos, I.; Espejo, G. L.; Ortiz, R. P.; Gómez-García, C. J.; Zakharov, L. N.; Nakano, M.; Ottosson, H.; Casado, J.; Haley, M. M. Nat Chem. 2016, 8, 753-759.
13.Hsieh, Y.-C.; Wu, C.-F.; Chen, Y.-T.; Fang, C.-T.; Wang, C.-S.; Li, C.-H.; Chen, L.-Y.; Cheng, M.-J.; Chueh, C.-C.; Chou, P.-T.; Wu, Y.-T. J. Am. Chem. Soc. 2018, 140, 14357-14366.
14.Lee, C.-C.; Chen, C.-I.; Fang, C.-T.; Huang, P.-Y.; Wu, Y.-T.; Chueh, C.-C. Adv. Funct. Mater. 2019, 29, 1808625.
15.Leroux, F. R.; Berthelot, A.; Bonnafoux, L.; Panossian, A.; Colobert, F. Chem. Eur. J. 2012, 18, 14232-14236.
16.Greulich, T. W.; Yamaguchi, E.; Doerenkamp, C.; Lübbesmeyer, M.; Daniliuc, C. G.; Fukazawa, A.; Eckert, H.; Yamaguchi, S.; Studer, A. Chem. Eur. J. 2017, 23, 6029-6033.
17.Kabir, S. M. H.; Iyoda, M. Synthesis, 2000, 13, 1839-1842.
18.Allen, F. H.; Kennard, O.; Watson, D. G.; Brammer, L.; Orpen, A. G.; Taylor, R. J. Chem. Soc., Perkin Trans. 2, 1987, 2 , S1-S19.
19.te Grotenhuis, C.; van den Heuvel, N.; van der Vlugt, J. I.; de Bruin. B. Angew. Chem. Int. Ed. 2018, 57, 140-145.
20.Cal, P. M. S. D.; Vicente, J. B.; Pires, E.; Coelho, A. V.; Veiros, L. F.; Cordeiro, C.; Gois, P. M. J. Am. Chem. Soc. 2012, 134, 10299-10305.