簡易檢索 / 詳目顯示

研究生: 楊佳文
Yang, Chia-Wen
論文名稱: 含咔唑及1,3,4-噁二唑或1,2,4-三唑基團之電激磷光雙極主體發光材料的合成、鑑定與光電應用
Bipolar Electrophosphorescent Host Materials Composed of Carbazole and Oxadiazole or Triazole: Synthesis, Characterization and Optoelectronic Applications
指導教授: 陳雲
Chen, Yun
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2014
畢業學年度: 102
語文別: 中文
論文頁數: 85
中文關鍵詞: 有機電激磷光咔唑衍生物主體發光材料
外文關鍵詞: blue electrophosphorescence, carbazole derivatives, host materials
相關次數: 點閱:154下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 磷光有機發光二極體(Phosphorescent Organic Light Emitting Diode)因理論的內部量子效率可高達100%,近幾年受到許多研究團隊的矚目。而磷光的主體材料需具備高三重激發態(ET)才能避免客體發光材料發生能量回傳問題,尤其是應用於藍色磷光材料,三重激發態能階高達2.7 eV。本研究所合成雙極主體材料F1 [5,5'-((9-phenyl-9H-carbazole-3,6-diyl)bis(3,1-phenylene))bis(2-(4-(tert-butyl)phenyl)-1,3,4-oxadiazole)]與F2 [3,6-bis(3-(5-(4-(tert-butyl)phenyl)-4-(4-butylphenyl)-4H-1,2,4-triazol-3-yl)phenyl)-9-phenyl-9H-carbazole],可應用藍光、綠光磷光元件中。透過suzuki-coupling reaction以mata-linkage設計方式連接具有電洞與電子傳輸功能的官能基團,以推電子基團的carbazole為核心,並導入拉電子基團[1,3,4]-oxadiazole或[1,2,4]-triazole,雙極主體材料能有效調整匹配的注入能階並保持高三重激發態以克服能量回傳的問題。磷光元件製作方面,主發光層是利用簡易的濕式旋轉塗佈方式成膜,藍色磷光元件結構:ITO/PEDOT:PSS/F2+7 wt% Firpic(~30 nm)/BCP(40 nm)/LiF(0.8 nm)/Al (80 nm),可得最佳亮度和電流效率分別為565 cd/m2、0.53 cd/A。綠色磷光元件結構:ITO/PEDOT:PSS/F1+4 wt% Ir(ppy)3(~35 nm)/BCP(40 nm)/LiF(0.8 nm)/Al(80 nm),可得最佳亮度和電流效率分別為3077 cd/m2、2.51 cd/A。研究結果發現,所合成的兩種雙極主體材料F2、F1分別可應用於藍色與綠色磷光元件中。兩者皆具備高三重激發態,並且有適當的注入能階大小(HOMO/LUMO)。於濕式旋轉塗佈製程上,相異的分子結構隨著不同溶劑系統的改變,可應用於藍色或綠色磷光客體發光材料中。

    A phosphorescent emitter is generally dispersed in a suitable host material to suppress self-quenching and prevent triplet-triplet annihilation. Especially to realize great performance for a blue phosphorescent emitter, the host material should have high triplet energy (ET > 2.65 eV) to avoid triplet reverse energy transfer. Carbazole derivatives are well-known hole-transporting host materials with high ET (> 3.0 eV), from which high performance electrophosphorescent devices have been fabricated. We designed and synthesized two kinds of carbazole-based bipolar host materials to be applied with blue and green phosphorescent dopants. Carbazole-derivatives are meta-linked with electron-transporting units [1,3,4]-oxadiazole and [1,2,4]-triazole at 3 and 6 positions by Suzuki coupling reaction. Their triplet energy (ET) remains high around 2.7 eV. On the other hand, to achieve low-cost and simple process, the strategy is to fabricate devices by solution-processes. The blue device using F2 [3,6-bis(3-(5-(4-(tert-butyl)phenyl)-4-(4-butylphenyl)-4H-1,2,4-triazol-3-yl)phenyl)-9 phenyl-9H-carbazole] as the host demonstrates the best performance with the maximum current efficiency of 0.53 cd/A, and maximum luminance of 565 cd/m2. The green device fabricated by F1 [5,5'-((9 -phenyl-9H-carbazole-3,6-diyl)bis(3,1-phenylene))bis(2-(4-(tert-butyl)phenyl)-1,3,4-oxadiazole)] as the host demonstrates the maximum current efficiency and maximum luminance are 2.51 cd/A, 3077 cd/m2 respectively.

    第1章 緒論 1 1-1 前言 1 1-2 有機共軛材料 3 1-3 螢光理論 5 1-4 OLEDs電激發光原理 10 1-5 元件的種類與常用材料 12 1-6 影響OLED發光效率因素 21 第2章 文獻回顧 23 2-1 主體發光材料 23 2-2 客體發光材料 31 2-3 研究動機 35 第3章 實驗部分 36 3-1 實驗鑑定儀器 36 3-2 元件製作使用儀器 38 3-3 實驗藥品及溶劑 39 3-4 合成流程與步驟 40 3-5 元件製作與量測 45 第4章 結果與討論 47 4-1 結構鑑定 47 4-2 物理性質探討 57 4-2-1 光學性質 57 4-2-2 熱性質分析 59 4-2-3 電化學性質 61 4-2-4 膜態性質 64 4-3 元件性質探討 67 4-3-1 電流密度-電壓-亮度(J-V-L)結果探討 68 4-3-2 元件效率 73 4-3-3 電激發光圖譜與CIE座標 75 第5章 結論 78 參考資料 80 附錄 83

    1. Jerry, M. Advanced Organic Chemistry reactions, mechanisms and structure (3rd. ed). (1985).
    2. 周蓁宜. 含部份水解亞磷酯基之聚芴:合成、鑑定及應用於提昇高分子發光二極體的效率. 碩士論文 (2013).
    3. Skoog, D. A., Holler, F. J. & Nieman, T. A. Principle of Instrumental analysis 5th Ed. (1998).
    4. Microscopy Resource Center (2012 Olympus America Inc.).
    5. Lakowicz, J. R. Principle of Fluorscence Spectroscopy, 3rd Ed. 1 (2006).
    6. Akcelrud, L. Prog. Polym. Sci. 28, 875-962 (2003).
    7. Nguyen, T. Q., Martini, I. B., Liu, J. & Schwartz, B. J. J. Phys. Chem. B 104, 237-255 (1990).
    8. Adachi, C. et al. Appl. Phys. Lett. 79, 2082 (2001).
    9. Adachi, C. et al. Appl. Phys. Lett. 78, 1662 (2001).
    10. Baldo, M. A., Lamansky, S., Burrows, P. E., Thompson, M. E. & Forrest, S. R. Appl. Phys. Lett. 75, 4 (1999).
    11. Lu, W. et al. Chem. Commum. 206 (2002).
    12. Walzer, K., Maennig, B., Pfeiffer, M. & Leo, K. Highly efficient organic devices based on electrically doped transport layers. Chem Rev. 107, 1233-1271 (2007).
    13. 陳金鑫 & 黃孝文. 有機電機發光材料與元件. (2005).
    14. Malliaras, G. G. & Scott, J. C. The roles of injection and mobility in organic light emitting diodes. J. Appl. Phys. 83, 5399-5403 (1998).
    15. Finkenzeller, W. J. The OLED Emitter Ir(btp)2(acac)–Photophysical Properties of the Triplet State Studied by Highly-Resolving Spectroscopy. (2008).
    16. Corporation. Fluorescence Resonance Energy Transfer (FRET). Prog. Polym. Sci. 28, 875-962 (2003).
    17. May, V. & Kühn, O. Charge and Energy Transfer Dynamics in Molecular Systems. 2nd, rev. and enl. ed. (2004).
    18. Kafafi, Z. H. Organic Electroluminescence. (2005).
    19. Larsen, D. Schematic diagram for Förster and Dexter energy transfer. UC Davis ChemWiki
    20. Zeghbroeck, B. V. Principle of Semiconductor Devices. (2011).
    21. Shirota, Y. & Kageyama, H. Charge carrier transporting molecular materials and their applications in devices. Chem Rev. 107, 953-1010 (2007).
    22. VanSlyke, S. A., Tang, C. W. & Roberts, L. C. US Patent 4,720,432. (1998).
    23. Elschner, A. et al. Synth. Met. 111, 139 (2000).
    24. VanSlyke, S. A. & Tang, C. W. US Patent 5,061,569. (1991).
    25. Wakimoto, T. et al. Electron. Devices 44, 1245 (1997).
    26. Stöβel, M. et al. Appl. Phys. Lett. 76, 115 (2000).
    27. Brown, T. M. et al. J. Appl. Phys. 93, 6159 (2003).
    28. Mitschke, U. & Bäuerle, P. J. J. Mater. Chem. 10, 1471 (2000).
    29. Freeman, D. C., White, C. E. & Am., J. Chem. Soc. 78, 2678 (1956).
    30. Adachi, C., Tsutsui, T. & Saito, S. Appl. Phys. Lett. 55, 1489 (1989).
    31. Kido, J., Ohtaki, C., Hongawa, K., Okuyama, K. & Nagai, N. J. Appl. Phys. 32, 917 (1993).
    32. Shi, J., Tang, C. W. & Chen, C. H. US Patent 5,646,948. (1997).
    33. O'Brien, D. F., Baldo, M. A., Thompson, M. E. & Forrest, S. R. Appl. Phys. Lett. 74, 442 (1999).
    34. Tang, B. Z. et al. Mater. Chem. 11, 2974 (2001).
    35. C.H. Chen, C. W. T., K.P. Klubek,. Thin Solid Films 363, 327 (2000).
    36. Fox, J. L. & Chen, C. H. US Patent 4,736,032. (1997).
    37. Shi, J. & Tang, C. W. Appl. Phys. Lett. 80, 3021 (2002).
    38. M.A.Baldo, Lamansky, S., Burrows, P. E., Thompson, M. E. & Forrest, S. R. Appl. Phys. Lett. 75, 4 (1994).
    39. Kwong, R. C. et al. Appl. Phys. Lett. 81, 162 (2002).
    40. Fink, R., Heischkel, Y., Thelakkat, M. & Schmidt, H. W. Chem. Mater. 10, 3620 (1998).
    41. Yang, M.-J. & Tsutsui, T. Jpn. J. Appl. Phys. 39, L828 (2000).
    42. Chen, C. H., Shi, J. & Tang, C. W. Macromol. Symp. 125, 1 (1997).
    43. Wohlgenannt, M., Tandon, K., Mazumdar, S., Ramasesha, S. & Vardeny, Z. V. Formation cross-sections of singlet and triplet excitons in pi-conjugated polymers. Nature 409, 494 (2001).
    44. Baldo, M. A. et al. Nature 395, 151 (1998).
    45. Hung, L. S. & Chen, C. H. Mater. Sci. Eng. 39, 143 (2002).
    46. 翁文國. 工業材料雜誌. 162, 75 (2000).
    47. Forrest, S. R. et al. Nature 395, 151 (1998).
    48. Kanai, H., Ichinosawa, S. & Sato, Y. Synth. Met. 91, 195 (1997).
    49. Lamansky, S. et al. Chem. Soc. 123, 4304 (2001).
    50. Tsutsui, T. et al. Jpn. J. Appl. Phys. 38, L1502 (1999).
    51. D'Andrade, B. W. et al. Appl. Phys. Lett. 79, 1045 (2001).
    52. Ikai, M., Ichinosawa, S., Sakamoto, Y., Suzuki, T. & Taga, Y. Appl. Phys. Lett. 79, 156 (2001).
    53. Adamovich, V. et al. New J. Chem. 26, 1171 (2002).
    54. Holmes, R. J. et al. Appl. Phys. Lett. 82, 2422 (2003).
    55. Brunner, K. et al. Chem. Soc. 126, 6035 (2004).
    56. Sasabe, H. et al. Adv. Mater. 24, 3212–3217 (2012).
    57. Holmes, R. J. et al. Appl. Phys. Lett. 83, 3813 (2003).
    58. Jeon, S. O., Jang, S. E., Son, H. S. & Lee, J. Y. Adv. Mater. 23, 1436 (2011).
    59. Yeh, S. J. et al. Adv. Mater. 17, 285 (2005).
    60. Adachi, C., Baldo, M. A., Forrest, S. R. & Thompson, M. E. Appl. Phys. Lett. 77, 904 (2000).
    61. Adachi, C., Baldo, M. A., Thompson, M. E. & Forrest, S. R. J. Appl. Phys. 90, 5048 (2001).
    62. Inomata, H. et al. Chem. Mater. 16, 1285 (2004).
    63. Fu, Q., Chen, J., Shi, C. & Ma, D. Appl. Mater. Interfaces 4, 6579 (2012).
    64. Jeon, S. O., Jang, S. E., Son, H. S. & Lee, J. Y. J. Mater. Chem. 22, 14546 (2012).
    65. Han, C. et al. Angew. Chem. Int. Ed. 51, 10104 (2012).
    66. Gong, S. et al. Adv. Mater. 23, 4956 (2011).
    67. Liu, Y. et al. J. Mater. Chem. C 2, 2488 (2014).
    68. Qiao, X. et al. J. Appl. Phys. 108 (2013).
    69. Baldo, M. A., Thompson, M. E. & Forrest, S. R. Nature 403, 750 (2000).
    70. Xie, H. Z. et al. Adv. Mater. 13, 1245 (2001).
    71. Grushin, V. V. et al. Chem. Commun., 1494 (2001).
    72. Huang, W. S. et al. Chem. Mater. 16, 2480 (2004).
    73. Li, J. et al. polyhedron 23, 419 (2004).
    74. Thompson, M. E. et al. 2005 Society for Information Display. (2005).
    75. Marsal, P., Avilov, I., Filho, D. A. d. S., Brédas, J. L. & Beljonne, D. Chem. Phys. Lett. 392, 521 (2004).
    76. Cui, L. S. et al. J. Mater. Chem. C 1, 3967 (2013).

    無法下載圖示 校內:2019-08-21公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE