| 研究生: |
簡汝嬑 Jian, Ru-Yi |
|---|---|
| 論文名稱: |
高雄市細懸浮微粒之減量成本與防制策略 Control Strategy and Cost for Improving the Ambient Fine Particle Concentration in Kaohsiung |
| 指導教授: |
吳義林
Wu, Yee-Lin |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 環境工程學系 Department of Environmental Engineering |
| 論文出版年: | 2017 |
| 畢業學年度: | 105 |
| 語文別: | 中文 |
| 論文頁數: | 139 |
| 中文關鍵詞: | 細懸浮微粒 、AERMOD 、CMAQ 、成本效益分析 、空氣污染防制 |
| 外文關鍵詞: | PM2.5, AERMOD, CMAQ, Cost-benefit analysis, Air pollution control |
| 相關次數: | 點閱:126 下載:8 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
環保署為提昇環境品質和維護國人健康,增訂細懸浮微粒周界空氣品質標準,24小時值與年平均值分別為35 μg/m3與15 μg/m3,且初步於109年達成全國細懸浮微粒年平均值15 μg/m3的目標,並逐期檢討我國PM2.5空氣品質標準。
本研究透過模擬PM2.5、SO2與NOx等空污排放對高雄市細懸浮微粒貢獻影響,且進行原生性PM2.5模擬結果之比較,並綜合各行業防制成本及處理效率,再利用線性規劃法分析不同空氣品質改善情境之空污削減效益,進而探討各污染物管制措施,以供管制細懸浮微粒之參考。
依照最新排放清冊TEDS9(基準年:2013年)篩選高雄市行業別,以AERMOD擴散模式模擬原生性PM2.5貢獻影響,發現每噸PM2.5排放中最高貢獻比例為食品業的0.017%;而以三維網格模式CMAQ模擬高雄市衍生性PM2.5影響,其結果呈現每噸SO2排放,以化學材料製造業之貢獻比例最高,其值為0.0002%;而每噸NOx排放之貢獻比例,以運輸工具製修業之0.001%為最高。
由原生性PM2.5模擬結果,探討CMAQ與AERMOD兩模式差異性,可發現與各行業排放重心高度或有效排放高度於CMAQ劃分之垂直分層有關,如近地表排放源(包含移動源及鋪面道路揚塵)因排放高度在第一層高度以內,貢獻濃度因測站附近高排放量而有高估現象;美濃站又因上風處排放源較少,使AERMOD模擬濃度偏低,產生CMAQ濃度/AERMOD平均濃度之比值差異較大的情形。若是排放重心高度或有效排放高度在CMAQ第一層高度以內的點源行業(鋼鐵業)及船舶業,因小港站附近多排放量高值,亦受CMAQ網格濃度高估的影響,而使CMAQ/AERMOD ratio偏大。另外,點源行業及船舶業因美濃站附近排放量極少,造成模擬濃度較低,而發生CMAQ貢獻濃度/AERMOD平均濃度之比值較低的現象。
收集各行業於PM2.5、SO2與NOx等污染物防制設備之成本資料後,依成本效益分析概念,探討高雄市2013年細懸浮微粒濃度分別改善5%、10%、15%、20%以及24% 等五種情境之減量情形,其中,在空品改善5%、10%與15%之情境分析中,可發現主要去除原生性粒狀物;20%改善情境下以硫氧化物為主要去除對象,且氮氧化物減量比例仍持續增加,總成本約耗費11.85億元;當空氣品質改善24%情境時,硫氧化物與氮氧化物去除比例仍增加約36%,且各行業中細懸浮微粒、硫氧化物及氮氧化物之管制皆接近最大控制效率,其成本模擬結果為62.8億元,而PM2.5、SO2與NOx分別大約削減5818噸、32810噸與 29255噸,且削減比例各為64.4%、90.6%與44.8%。由本研究模擬結果可知,應優先去除原生性粒狀物,而後去除硫氧化物,最後再去除氮氧化物。
Contributions of PM2.5 concentrations to Kaohsiung City in Taiwan from emissions of air pollutants including primary PM2.5, SO2, and NOx are simulated using AERMOD and Models-3/CMAQ in this study. The emission inventory for various emission sources are adopted from TEDS9 with base year 2013. The costs and efficiencies of different control technologies are combined with the simulation results for the cost-benefit analysis using Lingo System.
Simulation results show that the highest contributions are found to be 0.017% from food industry per ton of PM2.5 emission, 0.0002% from chemical material manufacturing per ton of SO2 emission, and 0.001% from transport equipment manufacturing per ton of NOx emission. Considering the difference between the two air quality models, the simulation results of primary PM2.5 from AERMOD are divided by those from Models-3/CMAQ for comparison. The contributions of primary PM2.5 are found to be over predicted at several EPA monitoring sites by Models-3/CMAQ when the height of the centroid for the type of emission source lies within the first layer of the grids.
Five scenarios, 5%, 10%, 15%, 20%, and 24% reduction of PM2.5 concentrations are simulated for optimal control strategy using Lingo System. The result of cost-benefit analysis indicates that primary PM2.5 should be removed first, followed by SO2 and then NOx. The cost of 24% reduction is 6.28 billion NT dollars with the emission reduction of 5818, 32810, and 29255 ton for PM2.5, SO2, and NOx, respectively.
Arunachalam, S. et al. Comparing Monitoring-Based and Modeling-Based Approaches for Evaluating Black Carbon Contributions from a U.S. Airport, Air Pollution Modeling and its Application XXI. Springer Netherlands, 619-623, 2011.
Calvert, J.G. and W.R. Stockwell. Mechanisms and Rates of the Gas-Phase Oxidations of Sulfur Dioxide. In: SO2, NO and NO2 Oxidation Mechanisms: 1984 Atmospheric Considerations J. G. Calvert (ed.), pp. 1-62. Butterworth, Boston.
Cimorelli, A. J., S.G. Perry, A. Venkatram, J. Weil, R. Paine, R.B. Wilson, R.F. Lee, E.D. Peters, R.W. Brode. AERMOD: A dispersion model for industrial source applications. Part I: General model formulation and boundary layer characterization. J. Appl. Meteor., 44, 682–693, 2005.
CMAQ (The Community Multiscale Air Quality Modeling System),空氣品質模式網站,USEPA,https://www.epa.gov/cmaq。
Frass, A.G. and V.G. Munley. Municipal Wastewater Treatment Cost, Journal of Environmental Economics and Management, 11, 28-38, 1984.
Hartman, R.S., D. Wheeler and M. Singh. The Cost of Air Pollution Abatement, IPPS: The Industrial Pollution Projection System, World Bank Policy Research Working Paper #1398, 1994.
Hegberg, B.A. Municipal Solid Waste Incineration with Energy Recovery: Technologies, Facilities, and Vendors for Less Then 550 Tons per Day, Office of Technology Transfer(OTT), University of Illinois, Center of Solid Waste Management and Research, 1990.
Isakov, V., Irwin, J. and Ching, J. Using CMAQ for Exposure Modeling and Characterizing the Sub-Grid Variability for Exposure Estimates. J. Appl. Meteorol. Climatol, 46, 1354-1371, 2007.
Isakov, V., Touma, J., Burke, J., Lobdell, D., Palma, T., Rosenbaum, A., Özkaynak, H. Combining regional and local scale air quality models with exposure models for use in environmental health studies. J. A&WMA, 59, 461-472, 2009.
Laden, F., Schwartz, J., Speizer, F.E., Dockery, D.W. Reduction in fine particulate air pollution and mortality - Extended follow-up of the Harvard six cities study. American Journal of Respiratory and Critical Care Medicine, 173, 667-672, 2006.
Mate, T., Guaita, R., Pichiule, M., Linares, C., Diaz, J. Short-term effect of fine particulate matter (PM2.5) on daily mortality due to diseases of the circulatory system in Madrid (Spain). Science of the Total Environment, 408, 5750-5757, 2010.
Polichetti, G., Cocco, S., Spinali, A., Trimarco, V., Nunziata, A. Effects of particulate matter (PM10, PM2.5 and PM1) on the cardiovascular system. Toxicology, 261, 1-8, 2009.
Pope, C.A., Burnett, R.T., Thun, M.J., Calle, E.E., Krewski, D., Ito, K., Thurston, G.D. Lung cancer, cardiopulmonary mortality, and long-term exposure to fine particulate air pollution. Jama-Journal of the American Medical Association, 287, 1132-1141, 2002.
Riog, RH. G. and A.D. Conley. Waste to Energy Facility Capital Cost, Proceedings of National Waste Processing Conference, pp. 23-28, 1988.
Seinfeld J.H. Atmospheric Chemistry and Physics of Air Pollution. Wiley, New York, 1986.
U.S. Environmental Protection Agency, AirControlNET Version 4.1 DEVELOPMENT REPORT, September 2005, US EPA
U.S. Environmental Protection Agency, CONTROL STRATEGY TOOL DEVELOPMENT DOCUMENTATION, June 2010, US EPA
U.S. E.P.A., User's guide for the AERMOD meteorological preprocessor (AERMET). vol., 2004.
U.S. E.P.A., User's guide for the AMS/EPA regulatory model - AERMOD. vol., 2004.
U.S.EPA.Photo-chemical-Modeling, https://www3.epa.gov/ttn/scram/photochemicalindex.htm
Wesson K., Baker K., Nopmongcol U., Yarwood G., Sakulyanontvittaya T., Strum M., Thurman J., Camalier L., Ensley D., Timin B., Phillips S., Fox T. Comparing Models/Methods for Estimating Multipollutant Fine-scale Air Quality Concentrations. Air Pollution Modeling and its Application XX; Steyn, D.G., Rao, S.T., Eds.; Springer Science: Dordrecht, The Netherlands, pp. 81–85, 2010.
余雅蕙,「空氣污染控制對策執行優先性評估方法研究」,國立中興大學資源管理研究所碩士論文,2002。
吳義林,「細懸浮微粒(PM2.5)管制策略研擬及減量成效分析」,環保署專案計畫,EPA-102-FA11-03-A082,2013。
空氣污染排放量查詢系統,https://teds.epa.gov.tw/new_main2-0-1.htm,行政院環保署,2016。
張木彬,「SCR、FGD及RCO/RTO對PM2.5前驅污染物去除效率探討」,環保署/國科會空污防制科研合作計畫,NSC102-EPA-F-008-001,2013。
張艮輝,「空氣品質模式技術支援與空氣品質維護評估計畫(第三年)」,環保署專案計畫,EPA-102-FA11-03-D107,2013。
陳純子,「台灣空氣污染與氣喘疾病相關性之研究」,中山醫學大學醫療產業科技管理學系碩士班學位論文,2012。
黃宗煌,「工業區污水處理廠處理收費費率的訂定」,臺灣土地金融季刊,第33卷第一期,pp. 197-228,1996。
黃春心、陳清南,「都是垃圾焚化廠操作管理成本分析之研究」,第十屆環境規劃與管理研討會論文集,環境工程學會,pp.189-196,1997。
黃文傑,「一般廢棄物處理方案之環境衝擊與成本效益評估比較」,國立臺北科技大學環境規劃與管理研究所碩士論文,2006。
溫麗琪、柏雲昌、劉大年、錢玉蘭、王京明、張世錚,「第二階段固定污染源空氣污染防制費之費率、徵收方式及影響衝擊」,環保署委託計畫報告,1997。
劉曉蘭,「固定污染源空氣污染防制效率與成本結構之探討」,國立臺北大學資源管理研究所碩士論文,2000。
郭子豪,「提升中部及雲嘉南空品區空氣品質改善計畫」,行政院環保署。EPA-101-FA12-03-A083,2012。
楊惟婷,「道路交通噪音與空氣污染物暴露對居民之心血管疾病盛行率的影響」,中國醫藥大學職業安全衛生學系博士班學位論文,2012。
蔡德明,「應用 Models-3/CMAQ以PC cluster研究高速公路網與電廠對南高屏比區臭氧濃度之影響」,國立成功大學環境工程學系博士論文,台南,2006。
駱尚廉、蕭代基,「各類廢水排放費率與成本函數研究(I)─染整業廢水」,行政院環保署。EPA-80-E3G1-09-09,1991。
賴信志,「台灣空氣品質決策支援系統先期作業建置計畫」,環保署專案計畫,EPA-102-FA11-03-A079,1991。
鄭博雄,「空氣污染防治成本函數」國立中興大學資源管理研究所碩士論文,1999。
曠永銓、許佩蒨,「AERMOD 煙流模式在台灣地區之應用研究」,中興工程,Vol.88,pp.55-62,2005。
環保署,「認識細懸浮微粒(PM2.5)」,行政院環境保護署,2015。