簡易檢索 / 詳目顯示

研究生: 戴暐晨
Tai, Wei-Chen
論文名稱: 結合海洋水色衛星產品與地球資源衛星資料 監測水庫水質典型分布特徵:演算法優化及水質空間互動型態之分類
Monitoring typical water quality distribution characteristics of reservoirs by combining ocean color satellite product and earth observation satellite data: algorithm improvement and classification of water quality spatial interaction
指導教授: 張智華
Chang, Chih-Hua
學位類別: 碩士
Master
系所名稱: 工學院 - 環境工程學系
Department of Environmental Engineering
論文出版年: 2022
畢業學年度: 110
語文別: 中文
論文頁數: 153
中文關鍵詞: 中尺度地球資源衛星衛星遙測台灣水庫水質光敏性水質藻類生長限制因子機器學習穩健迴歸隨機森林模糊均值聚類
外文關鍵詞: Moderate resolution earth resource satellite, Remote sensing, Taiwan reservoir water quality, Algae growth limiting factors, Machine learning
相關次數: 點閱:86下載:40
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 台灣降雨時間與空間分布不均,南部地區豐枯水期尤其明顯,確保枯水期用水成為重要課題。在台灣水庫作為僅次於河川引水、地下水抽用的第三大用水來源,水庫在雨季的儲水量是隔年春天是否缺水的關鍵,因此確保水庫水質、水量至關重要。而水庫水質受點源或非點源汙染、人為活動等因素影響,現有有限的水庫水質監測頻率與監測點位難以有效反應水質的時間與空間分布。近年來隨著遙測技術的發展,具備高光譜解析度及高空間解析度的中尺度地球資源衛星逐漸被應用於水質監測,特別是於2013年發射的Landsat-8(簡稱L-8),與2015年、2017年先後發射的Sentinel-2A與Sentinel-2B(兩者合稱S-2)。L-8與S-2之再訪天數短分別為16天與5天,相較傳統人工船採低頻率的點監測,衛星遙測屬於高頻率的面監測,能更完整地呈現水庫水質的時空分布,且監測成本低。然而利用衛星遙測獲得準確水質為一大考驗,因水質演算是藉由水體光學性質反演算水質,遙測光徑上的干擾、水質演算法於水體的適用性皆會產生誤差。此外,目前用於判斷水庫水質營養狀態的卡爾森指數(Carlson trophic state index, CTSI)中,因總磷(TP)非屬光敏性物質,而無法直接以光學特性反算濃度。因此確保遙測值的準確度與發展一套得應用於衡量遙測水質狀態的方式為本研究目標。
    本研究收集2017~2019年間共147幅S-2影像與環保署水質監測資料,以台灣本島18座水庫為研究區域。將自USGS下載之衛星影像依序經由大氣校正、閃爍校正、水質演算後,產生水庫之反射率與水色產品,並依據環保署監測點位座標提取遙測值與日期最接近之實測值建立匹配資料庫。為了建立可靠的匹配資料庫以評估現有演算法應用於台灣水庫的表現,以及發展演算法修正方式。使用穩健迴歸(robust regression)中的Huber regression方式去除匹配資料中離群值,再依據各水質遙測與實測值相關性,決定使用遙測與實測天數差4天以內的資料,最終匹配資料庫包含遙測與實測資料共301對。本研究從文獻中挑選3種濁度(TB)、1種透明度(SD)與4種葉綠素a (Chl-a)演算法,以匹配資料進行演算法適用性分析,整體而言單一紅光波段TB演算法(本文簡稱Nechad 2009)及半解析SD演算法(本文簡稱SASD)對18座水庫都有不錯的適用性,經水庫分類及線性修正後R分別達0.8809與0.7593,RMSE達1.82 FNU與0.68 m。在Chl-a方面,因匹配資料同時具有Case-1及Case-2海洋水色特性,單一演算法無法適用於所有匹配資料,故本研究對Chl-a進行非線性修正,以模糊均值聚類(Fuzzy c-means clustering,FCM)將匹配資料依光學性質分類並決定各類別適用之演算法,依據光學性質相似程度,分別計算演算法權重並混合兩種Chl-a演算法。修正後Chl-a演算法之R為0.4447,RMSE為6.5〖mg/m〗^3,於71張含3個實測點位以上的水庫影像中,約6成的影像有較佳相關性。本研究將18座水庫經線性修正後之Nechad 2009、SASD及經非線性修正後之Chl-a水色產品,中位數整合成枯豐季水質典型分布特徵,並分析其熱區、熱區差異及成因。同時分析3種水質典型分布特徵之空間互動關係,建立水質互動型態分類圖,呈現水庫藻類生長控制因子分布、水質狀態之演變及濁度與營養鹽貢獻來源,使水庫遙測水質資訊更加全面,提供水質管理者更完善的水質資訊。

    Due to uneven distribution of rainfall in Taiwan, reservoirs become an important source water. However, reservoir water may be contaminated by point source or non-point source pollution deriving from human activity in reservoir catchment. Therefore, monitoring its water quality is necessary. Nowadays, remote sensing technology has been developed rapidly. Moderate resolution satellites, which have both high spectral and spatial resolution, such as Landsat-8(L-8) and Sentinel-2(S-2) are applied to monitor the whole area of reservoirs with low cost. In this research, we collect S-2 images of 18 reservoirs in Taiwan USGS website and then made ocean color products by atmospheric correction software, ACOLITE. Water quality data were then extracted from ocean color products to construct a preliminary pairing database with Taiwan EPA in-situ monitoring data. The database was then used to determine suitable TB and Chl-a algorithms from 3 and 4 kinds of algorithms selected at first respectively for futher analysis. Also, acceptable remote sensing and in-situ observation day difference(within 4 days), and data outliers(12 pairs) were determine, according to product quality, R^2and Interpretability of robust regression result. Finally, the filtered pairing database contains 301 pairs of data. Through evaluating pearson corelation coefficient(R) of each algorithm, it shows that TB and SD have mid to high R, meanwhile Chl-a has low R because of water body applicability. Therefore, we then develop linear correcting methods(linear regression) for TB and SD algorithms, and non-linear correcting methods(blending algorithm) for Chl-a. Also, a water quality classifying standard was developed to applied on seasonal median water quality images of 18 reservoirs. After applying calssifying standard to median products, we then made classification images of water quality interaction of each reservoir. Distribution of algae growth limiting factors, potential pollution hot spots, appropriate location for water intake etc. can be clearly presented in a single image, providing complete information for decision makers.

    摘要 I 誌謝 VI 目錄 VII 表目錄 X 圖目錄 XII 第1章 前言 1 1.1 研究動機 1 1.2 研究目的 2 1.3 論文架構 3 第2章 文獻回顧 4 2.1 衛星遙測技術 4 2.1.1 水質遙測原理 6 2.1.2 水體光學性質 9 2.2 海洋水色衛星產品 13 2.2.1 內陸水體之應用 14 2.2.2 海洋水色產品品質 19 2.2.3 水色演算法準確度評估指標 20 2.2.4 空間統計分析 21 2.3 匹配資料庫資料分析方法 23 2.3.1 資料離群值篩選 23 2.3.2 資料分類 25 2.4 水質優養化 26 2.4.1 優養化成因 26 2.4.2 優養化與水質互動 26 第3章 研究材料與方法 27 3.1 研究區域 27 3.2 中尺度地球資源衛星 30 3.2.1 Sentinel-2衛星 30 3.2.2 衛星影像取得 31 3.3 衛星影像處理 34 3.3.1 大氣校正 35 3.3.2 閃爍校正 38 3.3.3 水色演算法 39 3.3.4 遙測水質資料庫建立 42 3.4 建立地真水質資料庫 45 3.5 匹配資料庫建立與演算法優化 49 3.6 水質空間互動型態之分類準則 52 3.6.1 水庫典型分布特徵影像製作 53 3.6.2 水質互動型態分類準則 54 3.6.3 水質互動型態分類門檻值決定與應用 56 第4章 結果與討論 59 4.1 地真與遙測資料統計分析 59 4.1.1 2017-2019湖庫水質地真資料統計分析 59 4.1.2 2017-2019 S-2水庫水色產品(遙測資料)統計分析 64 4.2 匹配資料庫建立 69 4.2.1 演算法初步分析 69 4.2.2 候選演算法與匹配天數之決定 77 4.3 水色演算法優化 94 4.3.1 線性修正 95 4.3.2 非線性修正 101 4.4 水質互動型態分類應用與分析 112 4.4.1 水質互動型態分類門檻值決定 113 4.4.2 枯豐季水庫水質典型分布特徵 115 4.4.3 水庫水質互動型態分類圖之特性統整 137 第5章 結論與建議 140 5.1 結論 140 5.2 建議 143 第6章 參考文獻 144 附錄 149 附錄一 FCM分類反射率波型數值 149 附錄二 單日水庫影像OC3與演算法混合修正KPI比較 150 附錄三 單日水庫影像Mishra與演算法混合修正KPI比較 152

    Aggarwal, C.C. Data Mining: The Textbook. Springer Publishing Company, Incorporated. 2015.
    Ayele, H.S. and Atlabachew, M. Review of Characterization, Factors, Impacts, and Solutions of Lake Eutrophication: Lesson for Lake Tana, Ethiopia. Environmental Science and Pollution Research 28: 14233-14252. 2021.
    Bélanger, S., Ehn, J. and Babin, M. Impact of Sea Ice on the Retrieval of Water-Leaving Reflectance, Chlorophyll a Concentration and Inherent Optical Properties from Satellite Ocean Color Data. Remote Sensing of Environment 111: 51-68. 2007.
    Babu, M., Srikanth, D.g. and Kp, S. Modis-Aqua Data Based Detection and Classification of Algal Blooms Along the Coast of India Using Rls Classifier. Procedia Computer Science 93: 424-430. 2016.
    Bezdek, J. Cluster Validity with Fuzzy Sets. Journal of Cybernetics 3. 1973.
    Bezdek, J.C., Ehrlich, R. and Full, W. Fcm: The Fuzzy C-Means Clustering Algorithm. Computers & Geosciences 10: 191-203. 1984.
    Broszeit, A. Assessing Long-Term Inland Water Quality Using Satellite Imagery: A Feasibility and Validation Study of Different Lake Types. 2015.
    Bychkovskiy, V., Megerian, S., Estrin, D. and Potkonjak, M. A Collaborative Approach to in-Place Sensor Calibration, In Proceedings of the 2nd international conference on Information processing in sensor networks, Springer-Verlag, Palo Alto, CA, USA, pp. 301–316. 2003.
    Campbell, J.W. and Feng, H. In (Ed.)^(Eds.) 2005.
    Carlson, R.E. A Trophic State Index for Lakes. Limnology and Oceanography 22: 361-369. 1977.
    Chandola, V. and Kumar, V. Outlier Detection : A Survey. ACM Computing Surveys 41. 2009.
    Chang, C.-H., Liu, C.-C., Wen, C.-G., Cheng, I.F., Tam, C.-K. and Huang, C.-S. Monitoring Reservoir Water Quality with Formosat-2 High Spatiotemporal Imagery. Journal of Environmental Monitoring 11: 1982-1992. 2009.
    Chang, N.-B., Vannah, B.W., Yang, Y.J. and Elovitz, M. Integrated Data Fusion and Mining Techniques for Monitoring Total Organic Carbon Concentrations in a Lake. International Journal of Remote Sensing 35: 1064-1093. 2014.
    Chavez, P. An Improved Dark-Object Subtraction Technique for Atmospheric Scattering Correction of Multispectral Data. Remote Sensing of Environment 24: 459-479. 1988.
    D'Sa, E.J. and Miller, R.L. Bio-Optical Properties in Waters Influenced by the Mississippi River During Low Flow Conditions. Rem Sens Environ 84: 538-549. 2003.
    Dariusz, F., Zapadka, T. and Dera, J. Remote Sensing Reflectance of Pomeranian Lakes and the Baltic*. Oceanologia 50. 2011.
    Dierssen, H. and Randolph, K. Remote Sensing of Ocean Color. Earth System Monitoring, by Orcutt, John, ISBN 978-1-4614-5683-4. Springer Science+Business Media New York, 2013, p. 439: 439. 2013.
    Dogliotti, A.I., Ruddick, K.G., Nechad, B., Doxaran, D. and Knaeps, E. A Single Algorithm to Retrieve Turbidity from Remotely-Sensed Data in All Coastal and Estuarine Waters. Remote Sensing of Environment 156: 157-168. 2015.
    Doron, M., Babin, M., Fanton Dandon, O., Mangin, A. and Garnesson, P. Ocean Transparency from Space: Validation of Algorithms Estimating Secchi Depth Using Meris, Modis and Seawifs Data. Remote Sensing of Environment - REMOTE SENS ENVIRON 115. 2011.
    Fiorani, L., Fantoni, R., Lazzara, L., Nardello, I., Okladnikov, I. and Palucci, A. Lidar Calibration of Satellite Sensed Cdom in the Southern Ocean. EARSeL eProceedings 5: 89-99. 2006.
    Fischer, M. Spatial Analysis and Geocomputation: Selected Essays. 2006.
    Fischer, M., Getis, A. and Eds. Recent Developments in Spatial Analysis. Spatial Statistics Behavioural Modelling, and Computational Intelligence. 1997.
    Frouin, R.J., Franz, B.A., Ibrahim, A., Knobelspiesse, K., Ahmad, Z., Cairns, B., Chowdhary, J., Dierssen, H.M., Tan, J., Dubovik, O., Huang, X., Davis, A.B., Kalashnikova, O., Thompson, D.R., Remer, L.A., Boss, E., Coddington, O., Deschamps, P.-Y., Gao, B.-C., Gross, L., Hasekamp, O., Omar, A., Pelletier, B., Ramon, D., Steinmetz, F. and Zhai, P.-W. Atmospheric Correction of Satellite Ocean-Color Imagery During the Pace Era. Frontiers in Earth Science 7. 2019.
    Gholizadeh, M.H., Melesse, A.M. and Reddi, L. A Comprehensive Review on Water Quality Parameters Estimation Using Remote Sensing Techniques. Sensors 16: 1298. 2016.
    Gons, H.J. Optical Teledetection of Chlorophyll a in Turbid Inland Waters. Environ Sci Technol 33: 1127-1132. 1999.
    Gons, H.J., Rijkeboer, M. and Ruddick, K.G. A Chlorophyll-Retrieval Algorithm for Satellite Imagery (Medium Resolution Imaging Spectrometer) of Inland and Coastal Waters. Journal of Plankton Research 24: 947-951. 2002.
    Harmel, T., Chami, M., Tormos, T., Reynaud, N. and Danis, P.-A. Sunglint Correction of the Multi-Spectral Instrument (Msi)-Sentinel-2 Imagery over Inland and Sea Waters from Swir Bands. Remote Sensing of Environment 204: 308-321. 2018.
    Harrison, J.F., Chang, C.-H. and Liu, C.-C. Identification of Inventory-Based Susceptibility Models for Assessing Landslide Probability: A Case Study of the Gaoping River Basin, Taiwan. Geomatics, Natural Hazards and Risk 8: 1730-1751. 2017.
    Hassan, N. and Woo, C.S. Machine Learning Application in Water Quality Using Satellite Data. IOP Conference Series: Earth and Environmental Science 842: 012018. 2021.
    Heidaryan, E. A Note on Model Selection Based on the Percentage of Accuracy-Precision. Journal of Energy Resources Technology 141. 2018.
    Hodge, V.J. and Austin, J. A Survey of Outlier Detection Methodologies. Artificial Intelligence Review 22: 85-126. 2004.
    Howarth, R.W. and Marino, R. Nitrogen as the Limiting Nutrient for Eutrophication in Coastal Marine Ecosystems: Evolving Views over Three Decades. Limnology and Oceanography 51: 364-376. 2006.
    Huber, P.J. Robust Estimation of a Location Parameter. The Annals of Mathematical Statistics 35: 73-101, 129. 1964.
    Imen, S., Chang, N.-B. and Yang, Y.J. Monitoring Spatiotemporal Total Organic Carbon Concentrations in Lake Mead with Integrated Data Fusion and Mining (Idfm) Technique. 2014.
    Jiang, D., Matsushita, B., Setiawan, F. and Vundo, A. An Improved Algorithm for Estimating the Secchi Disk Depth from Remote Sensing Data Based on the New Underwater Visibility Theory. ISPRS Journal of Photogrammetry and Remote Sensing 152: 13-23. 2019.
    Kallio, K., Koponen, S. and Pulliainen, J. Feasibility of Airborne Imaging Spectrometry for Lake Monitoring - a Case Study of Spatial Chlorophyll a Distribution in Two Meso-Eutrophic Lakes. International Journal of Remote Sensing - INT J REMOTE SENS 24: 3771-3790. 2003.
    Kratzer, S., Brockmann, C. and Moore, G. Using Meris Full Resolution Data to Monitor Coastal Waters — a Case Study from Himmerfjärden, a Fjord-Like Bay in the Northwestern Baltic Sea. Rem Sens Environ 112: 2284-2300. 2008.
    Kurekin, A.A., Miller, P.I. and Van der Woerd, H.J. Satellite Discrimination of Karenia Mikimotoi and Phaeocystis Harmful Algal Blooms in European Coastal Waters: Merged Classification of Ocean Colour Data. Harmful Algae 31: 163-176. 2014.
    Lee, Z., Shang, S., Hu, C., Du, K., Weidemann, A., Hou, W., Lin, J. and Lin, G. Secchi Disk Depth: A New Theory and Mechanistic Model for Underwater Visibility. Remote Sensing of Environment 169: 139-149. 2015.
    Longley, P.A. and Batty, M. Spatial Analysis : Modelling in a Gis Environment. Cambridge : Geoinformation international. 1996.
    Mishra, S. and Mishra, D.R. Normalized Difference Chlorophyll Index: A Novel Model for Remote Estimation of Chlorophyll-a Concentration in Turbid Productive Waters. Remote Sensing of Environment 117: 394-406. 2012.
    Mobley, C.D. Light and Water: Radiative Transfer in Natural Waters. Academic Press, INC, Academic Press. 1994.
    Moore, T., Campbell, J. and Dowell, M. A Class Based Approach for Characterizing the Uncertainty of the Modis Chlorophyll Product. Remote Sensing of Environment - REMOTE SENS ENVIRON 113: 2424-2430. 2009.
    Moore, T.S., Dowell, M.D., Bradt, S. and Ruiz Verdu, A. An Optical Water Type Framework for Selecting and Blending Retrievals from Bio-Optical Algorithms in Lakes and Coastal Waters. Remote Sensing of Environment 143: 97-111. 2014.
    Moran, M., Bryant, R., Thome, K., Ni, W., Nouvellon, Y., González-Dugo, M., Qi, J. and Clarke, T.R. A Refined Empirical Line Approach for Reflectance Factor Retrieval from Landsat5 Tm and Landsat7 Etm+. Remote Sensing of Environment - REMOTE SENS ENVIRON 78: 71-82. 2001.
    Moses, W., Gitelson, A., Perk, R., Gurlin, D., Rundquist, D., Leavitt, B., Barrow, T. and Brakhage, P. Estimation of Chlorophyll-a Concentration in Turbid Productive Waters Using Airborne Hyperspectral Data. Water research 46: 993-1004. 2011.
    Moses, W.J., Gitelson, A.A., Perk, R.L., Gurlin, D., Rundquist, D.C., Leavitt, B.C., Barrow, T.M. and Brakhage, P. Estimation of Chlorophyll-a Concentration in Turbid Productive Waters Using Airborne Hyperspectral Data. Water Research 46: 993-1004. 2012.
    Nechad, B., De Cauwer, V., Park, Y. and Ruddick, K. Suspended Particulate Matter (Spm) Mapping from Meris Imagery. Calibration of a Regional Algorithm for the Belgian Coastal Waters. 2003.
    Nechad, B., Dogliotti, A., Ruddick, K. and Doxaran, D. In (Ed.)^(Eds.) 2016, p. 419.
    Nechad, B., Ruddick, K. and Neukermans, G. Calibration and Validation of a Generic Multisensor Algorithm for Mapping of Turbidity in Coastal Waters. Proceedings of SPIE - The International Society for Optical Engineering 7473. 2009.
    O'Reilly, J.E., Maritorena, S., Mitchell, B.G., Siegel, D.A., Carder, K.L., Garver, S.A., Kahru, M. and McClain, C. Ocean Color Chlorophyll Algorithms for Seawifs. Journal of Geophysical Research: Oceans 103: 24937-24953. 1998.
    O'Reilly, J.E. and Werdell, P.J. Chlorophyll Algorithms for Ocean Color Sensors - Oc4, Oc5 & Oc6. Remote Sensing of Environment 229: 32-47. 2019.
    Onderka, M. Remote Sensing and Identification of Places Susceptible to Sedimentation in the Danube River.
    Pal, N.R. and Bezdek, J.C. On Cluster Validity for the Fuzzy C-Means Model. IEEE Transactions on Fuzzy Systems 3: 370-379. 1995.
    Papenfus, M., Schaeffer, B., Pollard, A.I. and Loftin, K. Exploring the Potential Value of Satellite Remote Sensing to Monitor Chlorophyll-a for Us Lakes and Reservoirs. Environmental Monitoring and Assessment 192: 808. 2020.
    Peter J. Rousseeuw, A.M.L. Robust Regression and Outlier Detection. JOHN WILEY & SONS Belgium. 1987.
    Pizani, F., Maillard, P., Ferreira, A. and Amorim, C. Estimation of Water Quality in a Reservoir from Sentinel-2 Msi and Landsat-8 Oli Sensors. V-3-2020: 401-408. 2020.
    Portney, L.G. and Watkins, M.P. Correlation, In Foundations of Clinical Research: Applications to Practice, 3e, McGraw-Hill Education, New York, NY. 2017.
    Probst, P. and Boulesteix, A.-L. To Tune or Not to Tune the Number of Trees in Random Forest? Journal of Machine Learning Research 18. 2017.
    Richter, R., Bachmann, M., Dorigo, W. and Muller, A. Influence of the Adjacency Effect on Ground Reflectance Measurements. IEEE Geoscience and Remote Sensing Letters 3: 565-569. 2006.
    Robinson, R.B., Cox, C.D. and Odom, K. Identifying Outliers in Correlated Water Quality Data. J Environ Eng 131: 651-657. 2005.
    Roy, D.P., Li, J., Zhang, H.K., Yan, L., Huang, H. and Li, Z. Examination of Sentinel-2a Multi-Spectral Instrument (Msi) Reflectance Anisotropy and the Suitability of a General Method to Normalize Msi Reflectance to Nadir Brdf Adjusted Reflectance. Remote Sensing of Environment 199: 25-38. 2017.
    Schaeffer, B., Salls, W., Coffer, M., Lebreton, C., Werther, M., Stelzer, K., Urquhart, E. and Gurlin, D. Merging of the Case 2 regional Coast Colour and Maximum-Peak Height Chlorophyll-a Algorithms: Validation and Demonstration of Satellite-Derived Retrievals across Us Lakes. Environmental Monitoring and Assessment 194: 179. 2022.
    Schläpfer, D., Hueni, A. and Richter, R. Cast Shadow Detection to Quantify the Aerosol Optical Thickness for Atmospheric Correction of High Spatial Resolution Optical Imagery. Remote Sensing 10: 200. 2018.
    Schowengerdt, R. Thematic Classification, pp. 387-XXXIII. 2007.
    Siddiqi, A., Baber, S., Weck, O.d. and Durell, C. In (Ed.)^(Eds.) IGARSS 2020 - 2020 IEEE International Geoscience and Remote Sensing Symposium, 2020, pp. 3158-3161.
    Song, K., Li, L., Li, S., Tedesco, L., Hall, B. and Li, L. Hyperspectral Remote Sensing of Total Phosphorus (Tp) in Three Central Indiana Water Supply Reservoirs. Water, Air, & Soil Pollution 223: 1481-1502. 2012.
    Space, T.A. Sentinel-2 Products Specification Document, Thales Alenia Space, esa. 2021.
    Sudheer, K.P., Chaubey, I. and Garg, V. Lake Water Quality Assessment from Landsat Thematic Mapper Data Using Neural Network : An Approach to Optimal Band Combination Selection. Journal of The American Water Resources Association 42: 1683-1695. 2006.
    Suganya, R. and Shanthi, R. Fuzzy C-Means Algorithm-a Review. International Journal of Scientific and Research Publications 2: 1. 2012.
    Syariz, M.A., Jaelani, L.M., Subehi, L., Pamungkas, A., Koenhardono, E.S. and Sulisetyono, A. Retrieval of Sea Surface Temperature over Poteran Island Water of Indonesia with Landsat 8 Tirs Image: A Preliminary Algorithm. Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci. XL-2/W4: 87-90. 2015.
    Toming, K., Kutser, T., Laas, A., Sepp, M., Paavel, B. and Nõges, T. First Experiences in Mapping Lake Water Quality Parameters with Sentinel-2 Msi Imagery. Remote Sensing 8: 640. 2016.
    Topp, S.N., Pavelsky, T.M., Jensen, D., Simard, M. and Ross, M.R.V. Research Trends in the Use of Remote Sensing for Inland Water Quality Science: Moving Towards Multidisciplinary Applications. Water 12: 169. 2020.
    Unninayar, S. and Olsen, L. Monitoring, Observations, and Remote Sensing – Global Dimensions, In Encyclopedia of Ecology, Jørgensen, S.E. and Fath, B.D. (Eds.), Academic Press, Oxford, pp. 2425-2446. 2008.
    Vanhellemont, Q. Adaptation of the Dark Spectrum Fitting Atmospheric Correction for Aquatic Applications of the Landsat and Sentinel-2 Archives. Remote Sensing of Environment 225: 175-192. 2019.
    Vanhellemont, Q. and Ruddick, K. Atmospheric Correction of Metre-Scale Optical Satellite Data for Inland and Coastal Water Applications. Remote Sensing of Environment 216: 586-597. 2018.
    Wang, M. and Shi, W. Cloud Masking for Ocean Color Data Processing in the Coastal Regions. Geoscience and Remote Sensing, IEEE Transactions on 44: 3196-3105. 2006.
    Warnecke, G., Allison, L.J., McMillin, L.M. and Szekielda, K.-H. Remote Sensing of Ocean Currents and Sea Surface Temperature Changes Derived from the Nimbus Ii Satellite. Journal of Physical Oceanography 1: 45-60. 1971.
    Willmott, C.J. On the Validation of Models. Physical Geography 2: 184-194. 1981.
    Yohai, V.J. High Breakdown-Point and High Efficiency Robust Estimates for Regression. The Annals of Statistics 15: 642-656, 615. 1987.
    Zhu, W., Yu, Q., Tian, Y., Chen, B. and Gardner, G. Estimation of Chromophoric Dissolved Organic Matter in the Mississippi and Atchafalaya River Plume Regions Using above-Surface Hyperspectral Remote Sensing. Journal of Geophysical Research 116. 2011.
    行政院環保署. 全國環境水質監測資訊網, https://wq.epa.gov.tw/EWQP/zh/EnvWaterMonitoring/Reservoir.aspx, Last Access: Oct. 15.
    林鎮洋. 110年度全國水庫水質治理前瞻綜合管理計畫, 行政院環境保護署. 2021.
    張智華, 黃良銘 and 陳婉如. 109年度南區水庫水質治理前瞻綜合管理計畫, 行政院環境保護署. 2020.
    經濟部水利署. 水利署年報(108年度). 經濟部水利署. 2020. Retrieved from https://lib.wra.gov.tw/WraLib/wSite/books_89893
    經濟部水利署. 中華民國109年台灣水文年報. 2021a. Retrieved from https://gweb.wra.gov.tw/wrhygis/EbookDownLoad.html
    經濟部水利署. 水庫風情, https://www.wra.gov.tw/News.aspx?n=3254, Last Access: Apr. 24.

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE