| 研究生: |
林文品 Lin, Wun-Pin |
|---|---|
| 論文名稱: |
雙送粉式雷射披覆304L不鏽鋼與氧化鋁Al2O3陶瓷粉末之製程特性研究 Characterizations of the laser cladding with twin powder feeders of 304L stainless steel and Al2O3 ceramic |
| 指導教授: |
林震銘
Lin, Jehn-ming |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 機械工程學系 Department of Mechanical Engineering |
| 論文出版年: | 2020 |
| 畢業學年度: | 108 |
| 語文別: | 中文 |
| 論文頁數: | 133 |
| 中文關鍵詞: | 雷射披覆 、粉末混合 、粉末濃度分布 、陶瓷基複合材料 |
| 外文關鍵詞: | Laser Cladding, Powder Mixing, Powder Concentration Distribution, Ceramic Matrix Composite |
| 相關次數: | 點閱:92 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究採用25W的CO2雷射對氧化鋁(Al2O3)與304L不鏽鋼粉末進行雙送粉雷射披覆加工。實驗中設計了雙粉末混合器,改善傳統雷射披覆的單一送粉缺點。以Fluent軟體分析混合器中的粉末流場特性及粉末混合後從噴嘴送出之軸向與徑向濃度分布;再使用數值分析程式計算粉末從噴嘴出口至基板飛行過程中,粉末受雷射加熱作用的溫度變化。
經由粉末濃度分布實驗觀察得知基板黏附的氧化鋁粉末呈現正常分布,隨著偏離中心軸距離增加而黏附量降低。但不鏽鋼粉末因反彈效應不具有正常分布。但披覆試件隨著不鏽鋼送粉的比例提高,披覆層高度也會隨之提高。披覆試件的抗彎強度在不鏽鋼含量低時較高,含量高時試件的孔隙及裂紋導致抗彎強度降低。因此披覆試件的硬度,在不同的位置硬度不同。披覆層之金屬相的硬度偏低約為250 HV,其餘平均約為1750 HV。觀察披覆層金相組織,因淬火效應導致硬度增高及晶粒尺寸減小。
In this study, a 25W CO2 laser and a twin powder feeding system were applied to laser cladding with alumina (Al2O3) and 304L stainless steel powders. In the experiment, a powder mixer was designed to improve the traditional laser cladding process. Using Fluent software to analyze the flow field of the powder mixer, the axial and radial powder concentration distribution of the powder jet from the cladding nozzle were simulated. Numerical analysis program is used to calculate the temperature of the single powder with laser heating from the nozzle exit to the substrate.
In the experiment the powder concentration distribution indicates that the ceramic powder to the substrate exhibits a normal distribution, except for the stainless steel powder rebounding from the substrate. As the proportion of stainless steel powder was increased, the height of the cladding layer will increase in the laser cladding. When the amount of the stainless steel powder is increased, the strength of the cladding is lower due to the porosity and cracks in the specimen. The hardness of the cladding specimen varies at different locations. The hardness of the metal phase is about 250 HV, and the hardness of other portions is about 1750 HV in average. According to the microstructures of the cladding, it is found that the grain size of the metal phase is reduced with a slightly quenched condition to increase its hardness.
[1]D. Kotoban, A. Aramov, T. Tarasova, “Possibility of multi-material laser cladding fabrication of nickel alloy and stainless steel”, Physics Procedia, Volume 83, P.634-646, 2016.
[2]B. E. Carroll, R. A. Otis, J. P. Borgonia, J. O. Suh, R. P. Dillon, A. A. Shapiro, D. C. Hofmann, Z. K. Liu, A. M. Beese, “Functionally graded material of 304L stainless steel and inconel 625 fabricated by directed energy deposition: Characterization and thermodynamic modeling”, Acta Materialia, Volume 108, P.46-54, 2016.
[3]P. P. Bandyopadhyay, V. K. Balla, S. Bose, A. Bandyopadhyay, “Compositionally Graded Aluminum Oxide Coatings on Stainless Steel Using Laser Processing”, Journal of the American Ceramic Society, Volume 90, Issue 7, P.1989-1991, 2007.
[4]P. Xu, C. X. Lin, C. Y. Zhou, X. P. Yi, “Wear and corrosion resistance of laser cladding AISI 304 stainless steel/Al2O3 composite coatings”, Surface and Coatings Technology, Volume 238, P.9-14, 2014.
[5]A. J. Pinkerton, L. Li, “Modelling Powder Concentration Distribution From a Coaxial Deposition Nozzle for Laser-Based Rapid Tooling”, Journal of Manufacturing Science and Engineering, Volume 126, P.33-41, 2004.
[6]N. Yang, “Concentration model based on movement model of powder flow in coaxial laser cladding”, Optics & Laser Technology, Volume 41, Issue 1, P.94-98, 2009.
[7]H. Liu, X. L. He, G. Yu, Z. B. Wang, S. X. Li, C. Y. Zheng, W. J. Ning, “Numerical simulation of powder transport behavior in laser cladding with coaxial powder feeding”, Science China Physics, Mechanics & Astronomy, Volume 58, No.10:104701, 2015.
[8]I. A. Ibrahim, F. A. Mohamed, E. J. Lavernia, “Particulate reinforced metal matrix composites - a review”, Journal of Materials Science, Volume 26, P.1137-1156, 1991.
[9]I. W. Donald, P. W. McMillan, Review “Ceramic-matrix composites”, Journal of Materials Science, Volume 11, P.949-972, 1976.
[10]M. Rosso, “Ceramic and metal matrix composites: Routes and properties”, Journal of Materials Processing Technology, Volume 175, Issue 1-3, P.364-375, 2006.
[11]Z. Lu, J. Cao, Z. Song, D. Li, B. Lu, “Research progress of ceramic matrix composite parts based on additive manufacturing technology”, Virtual and Physical Prototyping, Volume 14, Issue 4, P.333-348, 2019.
[12]J. Deckers, J. Vleugels, J. P. Kruth, “Additive manufacturing of ceramics: A review”, Journal of Ceramic Science and Technology, P.245-260, 2014.
[13]V. K. Balla, S. Bose, A. Bandyopadhyay, “Processing of Bulk Alumina Ceramics Using Laser Engineered Net Shaping”, International Journal of Applied Ceramic Technology, Volume 5, Issue 3, P.234-242, 2008.
[14]F. Y. Niu, D. J. Wu, S. Yan, G. Y. Ma, B. Zhang, “Process Optimization for Suppressing Cracks in Laser Engineered Net Shaping of Al2O3 Ceramics”, JOM, Volume 69, No.3, P.557-562, 2017.
[15]Y. Li, Y. Hu, W. Cong, L. Zhi, Z. Guo, “Additive manufacturing of alumina using laser engineered net shaping Effects of deposition variables”, Ceramics International, Volume 43, Issue 10, P.7768-7775, 2017.
[16]F. Niu, D. Wu, F. Lu, G. Liu, G. Ma, Z. Jia, “Microstructure and macro properties of Al2O3 ceramics prepared by laser engineered net shaping”, Ceramics International, Volume 44, Issue 12, P.14303-14310, 2018.
[17]E. Toyserkani, A. Khajepour, S. Corbin, ‘‘Laser cladding’’, CRC press, 2004.
[18]E. Toyserkani, A. Khajepour, S. Corbin, “3-D finite element modeling of laser cladding by powder injection: effects of laser pulse shaping on the process”, Optics and Lasers in Engineering, Volume 41, Issue 6, P.849-867, 2004.
[19]E. Kannatey-Asibu Jr., ‘‘Principles of Laser Materials Processing’’, Woodhead Publishing Ltd., 2010.
[20]S. Carty, I. Owen, W. M. Steen, B. Bastow, J. T. Spencer, “Catchment Efficiency For Novel Nozzle Designs Used In Laser Cladding And Alloying”, Laser Processing: Surface Treatment and Film Deposition, P.395-410, 1996.
[21]ANSYS FLUENT 14.0 User Guide, ANSYS Inc., 2011.
[22]A. V. Gusarov, I. Smurov, “Direct laser manufacturing with coaxial powder injection: Modelling of structure of deposited layers”, Applied Surface Science, Volume 253, Issue 19, P.8316-8321, 2007.
[23]劉昶熠, “雷射披覆之溫度分析”, 國立成功大學機械工程研究所碩士論文, 2001.
[24]C. Y. Liu, J. Lin, “Thermal processes of a powder particle in coaxial laser cladding”, Optics & Laser Technology, Volume 35, Issue 2, P.81-86, 2003.
[25]N. K. Tolochko, T. Laoui, Y. V. Khlopkov, S. E. Mozzharov, V. I. Titov, M. B. Ignatiev, “Absorptance of powder materials suitable for laser sintering”, Rapid Prototyping Journal, Volume 6, Issue 3, P.155-161, 2000.
[26]W. M. Steen, “Laser Material Processing”, Springer Companies, v4, 2010.
[27]P. Auerkari, “Mechanical and physical properties of engineering alumina ceramics”, Valtion teknillinen tutkimuskeskus (VTT), 1996.
[28]M. M. Hossain, M. R. Alam, T. Watanabe “Thermal Treatment of Al2O3, MgO, and CeO2 Granulated Powders by Induction Thermal Plasma: A Numerical Approach”, Japanese Journal of Applied Physics, Volume 52, Number 1S, 2013.
[29]V. Fallah, M. Alimardani, S. F. Corbin, A. Khajepour, “Temporal development of melt-pool morphology and clad geometry in laser powder deposition”, Computational Materials Science, Volume 50, Issue 7, P.2124-2134, 2011.
[30]黃威霖, “低功率雷射披覆氧化鋁Al2O3粉末之機械性質研究”, 國立成功大學機械工程研究所碩士論文, 2019.
[31]ASTM Standard C1611-18, “Standard Test Method for Flexural Strength of Advanced Ceramics at Ambient Temperature”, 2018.
[32]邱品樵, “雷射披覆溫度於形貌控制與顯微結構之影響”, 國立成功大學機械工程研究所碩士論文, 2016.
校內:2030-07-21公開