| 研究生: |
陳昱文 Chen, Yu-Wen |
|---|---|
| 論文名稱: |
發展基於米氏理論之精密演算法用於計算淺層生醫組織之吸收散射係數與相位函數 Development of a precise algorithm based on Mie theory to recover the absorption coefficient, scattering coefficient and phase function of biomedical superficial tissue |
| 指導教授: |
曾盛豪
Tseng, Sheng-Hao |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
理學院 - 光電科學與工程學系 Department of Photonics |
| 論文出版年: | 2017 |
| 畢業學年度: | 105 |
| 語文別: | 英文 |
| 論文頁數: | 114 |
| 中文關鍵詞: | 漫反射光譜 、吸收係數 、散射係數 、散射相位函數 |
| 外文關鍵詞: | Diffuse reflectance spectroscopy, Absorption coefficient, Reduced scattering coefficient, Scattering phase function |
| 相關次數: | 點閱:98 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在這篇研究中我們建構了一種嶄新的光子演算模型,其利用波長500到1000奈米的漫反射光譜,除了可精確算出潛層組織的吸收係數與散射係數以外,更可進一步反算出另一與組織粒子型態相關的相位函數。量測淺層組織需要使用很短的光源與偵測器距離,但一般漫反射光譜傳播演算法在此狀況下會因為光子在沒有經過足夠的散射便回到偵測器,而使原本只考慮第一階粒子散射角度期望值的Henyey-Greestein相位函數不再符合短距離偵測端下的散射現象。為了全面的描述在短距離偵測端下的粒子散射行為,我們使用運算較複雜的米氏理論去取代原本的相位函數,結合利用圖形處理器多核心架構的蒙地卡羅演算法,進而模擬單色光打到粒子的散射情形並建構不同吸收散射的光譜值資料庫。而這邊我們加入了第三個有助於描述相位函數的光學參數,此光學參數包含了第一階與第二階的散射角度期望值,因此可以更詳細的描述短偵測端距離下的散射狀況。此資料庫配合類神經網路與最小平方法創造出一個全新的模型,其可以反算樣本的吸收散射係數與相位函數。經由比較舊有的相位函數與米氏相位函數所建構成的演算法去反算模擬皮膚的均質液態假體,我們證明此演算法的可用性,且米氏理論的加入的確可以較舊有相位函數更精確的算出假體的吸收、散射係數與相位函數。而最後本研究也量測了不同部位活體皮膚的光學參數,進而去了解淺層皮膚的光學性質與粒子分布的可能性。
In this thesis we build a novel photon calculated algorithm, by using the diffuse reflectance spectroscopy(DRS) from 500 to 1000 nm wavelength, this model not only can determine the absorption coefficient (μ_a) and reduced scattering coefficient (μ_s') of tissues, but also can recover another which is a scattering particle type related parameter called phase function γ. The DRS measurement of superficial tissue need shorter source-detector separation, however the typical photon transport model, where the Henyey-Greenstein phase function only consider the first order expected value of the scattering angle distribution, in this condition may no longer suitable for describing the photon scattering phenomenon cause the photon do not undergo enough scattering before back to the detector. To completely describe the particle scattering behavior in shorter source-detector separation, we use a more rigorous Mie theory to replace the ordinary phase function. The new phase function was combined into the parallel computed Monte Carlo method implemented by the graphics processing units to simulate the scattering condition of a monochromatic light hit a specific particle, and to further constructed the reflectance database of different optical properties. Here we added the consideration of the third parameter γ which contained the first and second order of scattering angle expected value to depict the phase function of scattering more comprehensively. We further utilized the reflectance database to establish a connection between the optical properties and diffuse reflectance spectra with Artificial Neural Network and least-squares method. By comparing the calculated result of biomimetic liquid phantoms with algorithm made by original Henyey-Greenstein phase function and Mie phase function, we verified the usability of this new algorithm which employed Mie theory as the phase function, and it indeed can recover μ_a, μ_s' γ of sample more accurately. Finally, we also measured different positions of human arm skin to reveal the properties and scattering particle distribution of shallower skin tissue.
[1] H. Roehrig. X. Gu. J. Fan, "Physical evaluation of color and monochrome medical displays using an imaging colorimeter," Proc. SPIE 8673 (2013).
[2] C. A. Thorling, Y. Dancik, C. W. Hupple, G. Medley, X. Liu, A. V. Zvyagin, T. A. Robertson, F. J. Burczynski, and M. S. Roberts, "Multiphoton microscopy and fluorescence lifetime imaging provide a novel method in studying drug distribution and metabolism in the rat liver in vivo," Journal of biomedical optics 16, 086013 (2011).
[3] R. Tanaka, S. Fukushima, K. Sasaki, Y. Tanaka, H. Murota, T. Matsumoto, T. Araki, and T. Yasui, "In vivo visualization of dermal collagen fiber in skin burn by collagen-sensitive second-harmonic-generation microscopy," Journal of biomedical optics 18, 61231 (2013).
[4] R. Bays, G. Wagnieres, D. Robert, D. Braichotte, J. F. Savary, P. Monnier, and H. van den Bergh, "Clinical determination of tissue optical properties by endoscopic spatially resolved reflectometry," Applied optics 35, 1756-1766 (1996).
[5] F. Bevilacqua, and C. Depeursinge, "Monte Carlo study of diffuse reflectance at source-detector separations close to one transport mean free path," Journal of the Optical Society of America a-Optics Image Science and Vision 16, 2935-2945 (1999).
[6] A. D. Kim, C. Hayakawa, and V. Venugopalan, "Estimating optical properties in layered tissues by use of the Born approximation of the radiative transport equation," Optics letters 31, 1088-1090 (2006).
[7] A. Ishimaru, Wave Propagation and Scattering in Random Media (Academic Press, 1978).
[8] K. M. Yoo, F. Liu, and R. R. Alfano, "When Does the Diffusion-Approximation Fail to Describe Photon Transport in Random-Media," Physical review letters 64, 2647-2650 (1990).
[9] T. J. Farrell, M. S. Patterson, and B. Wilson, "A Diffusion-Theory Model of Spatially Resolved, Steady-State Diffuse Reflectance for the Noninvasive Determination of Tissue Optical-Properties Invivo," Medical physics 19, 879-888 (1992).
[10] S. H. Tseng, C. Hayakawa, B. J. Tromberg, J. Spanier, and A. J. Durkin, "Quantitative spectroscopy of superficial turbid media," Optics letters 30, 3165-3167 (2005).
[11] S. H. Tseng, C. Hayakawa, J. Spanier, and A. J. Durkin, "Investigation of a probe design for facilitating the uses of the standard photon diffusion equation at short source-detector separations: Monte Carlo simulations," Journal of biomedical optics 14, 054043 (2009).
[12] S. L. Jacques and L. Wang, "Monte carlo modeling of light transport in multi-layered tissues in standard C," University of Texas M. D. Anderson Cancer Center, Houston, Tex, (2012).
[13] D. B. Kirk, "NVIDIA CUDA software and GPU parallel computing architecture," NVIDIA Corporation (2006-2008).
[14] J. L. Vandewalle, Johan A. K. Suykens, and Bart L. R. Moor, "Artificial neural networks for modelling and control of nonlinear systems," ISBN 0-7923-9678-2 (1996).
[15] Y. W. Chen, and S. H. Tseng, "Efficient construction of robust artificial neural networks for accurate determination of superficial sample optical properties," Biomedical optics express 6, 747-760 (2015).
[16] S. H. Tseng, P. Bargo, A. Durkin, and N. Kollias, "Chromophore concentrations, absorption and scattering properties of human skin in-vivo," Optics express 17, 14599-14617 (2009).
[17] Y. W. Chen, J. Y. Guo, S. Y. Tzeng, T. C. Chou, M. J. Lin, L. L. Huang, C. C. Yang, C. K. Hsu, and S. H. Tseng, "Toward reliable retrieval of functional information of papillary dermis using spatially resolved diffuse reflectance spectroscopy," Biomedical optics express 7, 542-558 (2016).
[18] R. A. Bolt, and J. J. Ten Bosch, "Method for measuring position-dependent volume reflection," Applied optics 32, 4641-4645 (1993).
[19] A. Kienle, L. Lilge, M. S. Patterson, R. Hibst, R. Steiner, and B. C. Wilson, "Spatially resolved absolute diffuse reflectance measurements for noninvasive determination of the optical scattering and absorption coefficients of biological tissue," Applied optics 35, 2304-2314 (1996).
[20] W. M. Irvine, "Multi scattering by large particles," The Astrophysical Journal, 1563-1575 (1965).
[21] H. V. Hulst, "Multiple Light Scattering, Tables, Formulas, and Applications," Academic, London II (1980).
[22] B. C. Wilson, S. T. Flock, and M. S. Patterson, "Total attenuation coefficient and scattering phase functions of tissues and phantom materials at 633 nm," Med. Phys. 14, 835-841 (1987).
[23] H. I. Wu, and L. V. Wang, " Biomedical Optics:principles and imagine," John Wiley & Sons, Inc., New Jercy (2007).
[24] P. Thueler, I. Charvet, F. Bevilacqua, M. St Ghislain, G. Ory, P. Marquet, P. Meda, B. Vermeulen, and C. Depeursinge, "In vivo endoscopic tissue diagnostics based on spectroscopic absorption, scattering, and phase function properties," Journal of biomedical optics 8, 495-503 (2003).
[25] S. C. Kanick, D. M. McClatchy, 3rd, V. Krishnaswamy, J. T. Elliott, K. D. Paulsen, and B. W. Pogue, "Sub-diffusive scattering parameter maps recovered using wide-field high-frequency structured light imaging," Biomedical optics express 5, 3376-3390 (2014).
[26] L. Wang, S. L. Jacques, and L. Zheng, "MCML--Monte Carlo modeling of light transport in multi-layered tissues," Computer methods and programs in biomedicine 47, 131-146 (1995).
[27] I. V. Yaroslavsky, A. N. Yaroslavsky, V. V. Tuchin, and H. J. Schwarzmaier, "Effect of the scattering delay on time-dependent photon migration in turbid media," Applied optics 36, 6529-6538 (1997).
[28] M. Testorf, U. Osterberg, B. Pogue, and K. Paulsen, "Sampling of time- and frequency-domain signals in monte carlo simulations of photon migration," Applied optics 38, 236-245 (1999).
[29] M. S. Patterson. D. R. Wyman, and B. C. Wilson, "Similarity relations for anisotropic scattering in Monte Carlo simulations of deeply penetrating neutral particles," J. Comput. Phys Med Biol 81, 137–150 (1989).
[30] D. R. Wyman, M. S. Patterson, and B. C. Wilson, "Similarity relations for the interaction parameters in radiation transport," Applied optics 28, 5243-5249 (1989).
[31] J. R. Zijp, and J. J. Ten Bosch, "Anisotropy of volume-backscattered light," Applied optics 36, 1671-1680 (1997).
[32] J. R. Mourant, J. Boyer, A. H. Hielscher, and I. J. Bigio, "Influence of the scattering phase function on light transport measurements in turbid media performed with small source-detector separations," Optics letters 21, 546-548 (1996).
[33] A. Kienle, F. K. Forster, and R. Hibst, "Influence of the phase function on determination of the optical properties of biological tissue by spatially resolved reflectance," Optics letters 26, 1571-1573 (2001).
[34] D. Toublanc, "Henyey-Greenstein and Mie phase functions in Monte Carlo radiative transfer computations," Applied optics 35, 3270-3274 (1996).
[35] J. R. Mourant, J. P. Freyer, A. H. Hielscher, A. A. Eick, D. Shen, and T. M. Johnson, "Mechanisms of light scattering from biological cells relevant to noninvasive optical-tissue diagnostics," Applied optics 37, 3586-3593 (1998).
[36] M. Canpolat, and J. R. Mourant, "High-angle scattering events strongly affect light collection in clinically relevant measurement geometries for light transport through tissue," Physics in medicine and biology 45, 1127-1140 (2000).
[37] G. M. Palmer, and N. Ramanujam, "Monte Carlo-based inverse model for calculating tissue optical properties. Part I: Theory and validation on synthetic phantoms," Applied optics 45, 1062-1071 (2006).
[38] S. Streicher, R. Kampmann, S. Sinzinger, O. Kalthoff, "Efficient and precise simulation of multiple Mie scattering events using GPGPUs," Proc. of SPIE 8619 (2013).
[39] Y. Z. Zhiyi Yang, and Yong Pu, "Parallel Image Processing Based on CUDA," IEEE Computer Science and Software Engineering 3, 198-201 (2008).
[40] E. Alerstam, W. C. Lo, T. D. Han, J. Rose, S. Andersson-Engels, and L. Lilge, "Next-generation acceleration and code optimization for light transport in turbid media using GPUs," Biomedical optics express 1, 658-675 (2010).
[41] N. Murata, S. Yoshizawa, and S. Amari, "Network information criterion-determining the number of hidden units for an artificial neural network model," IEEE transactions on neural networks 5, 865-872 (1994).
[42] V. R. Rojas, "Neural Networks," chapter 7 (1996).
[43] R. R. Anderson, and J. A. Parrish, "The optics of human skin," J Invest Dermatol 77, 13-19 (1981).
[44] S. L. Jacques, C. A. Alter, and S. A. Prahl, "Angular dependence of He–Ne laser light scattering by human dermis," Lasers Life Sci 1, 309–333 (1987).
[45] Y. W. Chen, "Development of an artificial neural network for recovering the optical properties of superficial volume of biological tissues in the non-diffusion regime " (2014).
[46] R. Michels, F. Foschum, and A. Kienle, "Optical properties of fat emulsions," Optics express 16, 5907-5925 (2008).
[47] A. Bhandari, B. Hamre, O. Frette, K. Stamnes, and J. J. Stamnes, "Modeling optical properties of human skin using Mie theory for particles with different size distributions and refractive indices," Optics express 19, 14549-14567 (2011).
[48] R. Drezek, A. Dunn, and R. Richards-Kortum, "Light scattering from cells: finite-difference time-domain simulations and goniometric measurements," Applied optics 38, 3651-3661 (1999).
[49] S. L. Jacques, "Optical assessment of tissue heterogeneity in biomaterial and implants," Proc. SPIE 8673, 576-580 (2000).
[50] B. L. Diffey, "A mathematical model for ultraviolet optics in skin," Physics in medicine and biology 28, 647-657 (1983).
[51] R. K. Wang, "Modelling optical properties of soft tissue by fractal distribution of scatterers," J. Mod. Opt. 47(1), 103 – 120 (2000).
[52] S. K. Sharma and S. Banerjee, "Volume concentration and size dependence of diffuse reflectance in a fractal soft tissue model," Med. Phys. 32(6), 1767 - 1774 (2005).
[53] K. W. Calabro, and I. J. Bigio, "Influence of the phase function in generalized diffuse reflectance models: review of current formalisms and novel observations," Journal of biomedical optics 19, 75005 (2014).
[54] S. T. Flock, S. L. Jacques, B. C. Wilson, W. M. Star, and M. J. van Gemert, "Optical properties of Intralipid: a phantom medium for light propagation studies," Lasers in surgery and medicine 12, 510-519 (1992).
[55] J. W. Pickering, S. A. Prahl, N. van Wieringen, J. F. Beek, H. J. Sterenborg, and M. J. van Gemert, "Double-integrating-sphere system for measuring the optical properties of tissue," Applied optics 32, 399-410 (1993).
[56] S. Prahl, "Everything I think you should know about Inverse Adding-Doubling," chapter 4.2 (2011).
[57] A. N. Bashkatov, E. A. Genina, V. I. Kochubey, and V. V. Tuchin, "Optical properties of human skin, subcutaneous and mucous tissues in the wavelength range from 400 to 2000 nm," Journal of Physics D-Applied Physics 38, 2543-2555 (2005).
[58] V. Podrazky, and V. Sedmerova, "Densities of collagen dehydrated by some organic solvents," Experientia 22(12), 792 (1966).
[59] S. L. Jacques, "Melanosome absorption coefficient," (1998), http://omlc.ogi.edu/spectra/melanin/mua.html.
[60] S. Prahl, "Hemoglobin absorption coefficient," (1999), http://omlc.ogi.edu/spectra/hemoglobin/index.html.
[61] L. Kou, D. Labrie, and P. Chylek, "Refractive indices of water and ice in the 0.65- to 2.5-microm spectral range," Applied optics 32, 3531-3540 (1993).
[62] H. Tian, Y. Liu, and L. Wang, "Influence of the third-order parameter on diffuse reflectance at small source-detector separations," Optics letters 31, 933-935 (2006).
校內:2022-06-20公開