簡易檢索 / 詳目顯示

研究生: 涂煜勛
Tu, Yu-Xun
論文名稱: 側鏈含二苯乙烯苯及噁二唑衍生物高分子 的合成與光電性質探討
指導教授: 陳雲
Chen, Yun
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2005
畢業學年度: 93
語文別: 中文
論文頁數: 118
中文關鍵詞: 二苯乙烯苯噁二唑掺合能量轉移
外文關鍵詞: PLED, RAFT
相關次數: 點閱:73下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  •   高分子發光二極體(PLED)近十年來倍受學界與產業界的注目,但此種發光元件目前還有一些問題仍待克服。為了改善全共軛高分子光色不純、濃度萃熄效應、成膜不均勻等問題,主鏈含孤立發光(電洞傳送)與電子傳送單位的交互共聚物無法改變發光(電洞傳送)/電子傳送單位含量比的缺點,以及側鏈含發光單位高分子合成方法中,反應控制不易、難以合成團聯共聚物等問題,本研究利用可控制型活性自由基聚合法中的RAFT聚合法製備側鏈含發光(電洞傳送)單位與電子傳送單位之電激發光高分子材料。

      本研究取以RAFT聚合法合成的前驅共聚物,分別與二苯乙烯苯發光團及1,3,4-噁二唑電子傳送基團利用Willamson縮合反應的方式合成出高分子P1~P3。在物理性質上,P1、P3高分子並沒有發現熔點(Tm)及玻璃轉移溫度(Tg)的出現,而P2的玻璃轉移溫度為116℃,P1~P3的熱裂解溫度(Td)分別為381℃、362及372℃,並可觀察到主鏈及側鏈裂解的情形。在光學性質上,P1~P3可稀釋發光團濃度,降低濃度萃熄效應,另外觀察P1、P2摻和後能量轉移情形,在P2/P1=5/95及P2/P1=10/90可造成完全能量轉移,並與P4比較能量轉移機制的差異與影響。在電化學上,循環伏安法推算出P1~P3 HOMO與LUMO能階,進而求出能帶間隙,並利用模式化合物探討電子及電洞注入情形。在元件方面,雙層元件P1及P2:P2=10:90的起始電場分別為8.60×105 V/cm和8.08×105 V/cm,其最大輝度分別為1.50 cd/m2和1.88 cd/m2,發現摻合後其元件性質不如預期,這與高分子膜態的微相分離有密切關係。

     Electroluminescent (EL) polymers for light-emitting diode (LED) intrigued interests in both academic and industrial circles due to their potential application in flat and large area displays. However, some aspects need further improvement to enhance their commercialization possibility. In order to improve color impurity compared with fully conjugated polymers and concentration quenching effect, this research employed one of controlled/living free radical polymerization (CRP) to prepare EL polymers containing pendant emitting and electron-
    transporting chromophores.

     In this work, three novel copolymers P1~P3 consisting of the distyryllbenzene fluorophores or 1,3,4-Oxadiazole have been synthesized by Williamson condensation with precursor copolymer by controlled/living free radical polymerization. The copolymers were completely soluble in common organic solvents, and defect-free optical thin film was easily spin-coated onto the indium tin oxide (ITO) substrate. The UV/vis absorption and PL spectra of P1~P3 in CHCl3 and in films have be charactered. By blend system of P1 and P2, the behavior of energy transfer from P2 to P1 have be discussed in detail. The HOMO and LUMO energy levels of these copolymers have been estimated from their cyclic voltammograms. In order to understand the mechanism of hole and electron injection in devices by the method of cyclic voltammograms, four model compounds were also synthesized. Double layer devices ITO/PEDOT/copolymers/Al were fabricated. The initial electric field and maximum luminance of ITO/PEDOT/P2:P1=10:90/Al were 8.08×105 V/cm and 1.88 cd/m2, respectively. The performance of devices of blend system was less than expected, the phase separation forming in film dominate the phenomenon.

    目 錄 中文摘要…………………………………………………………Ⅰ 英文摘要…………………………………………………………Ⅱ 誌 謝…………………………………………………………Ⅲ 目 錄…………………………………………………………Ⅳ 流程目錄…………………………………………………………Ⅷ 表 目 錄…………………………………………………………Ⅸ 圖 目 錄…………………………………………………………Ⅹ 第一章 緒論 1-1 前言…………………………………………………………1 1-2 理論基礎……………………………………………………2 1-2-1 共軛導電高分子的電子狀態……………………………2 1-2-2 螢光原理…………………………………………………3 1-3 發光原理與結構……………………………………………6 1-3-1 發光原理…………………………………………………6 1-3-2 元件結構…………………………………………………7 1-3-3 發光效率…………………………………………………11 1-4  有機發光二極體技術發展.………………………………12 1-4-1 發光二極體材料的發展…………………………………12 1-4-2 全彩化技術………………………………………………13 1-5 未來展望……………………………………………………14 第二章 文獻回顧 2-1 前言…………………………………………………………15 2-2 高分子系統…………………………………………………15 2-2-1 全共軛系統………………………………………………15 2-2-2 孤立系統…………………………………………………16 2-3 可控制型活性自由基聚合法………………………………19 2-4 能量轉移……………………………………………………21 2-4-1 簡介………………………………………………………21 2-4-2 能量轉移形式……………………………………………23 2-5 高分子掺合…………………………………………………24 2-5-1 簡介………………………………………………………24 2-5-2 掺合系統的應用…………………………………………25 2-6 研究動機……………………………………………………26 第三章 實驗部份 3-1 實驗裝置與設備……………………………………………27 3-2 鑑定儀器……………………………………………………28 3-3 物性及光電特性測量儀器…………………………………29 3-4 藥品及材料…………………………………………………33 3-5 合成步驟與結果……………………………………………35 3-5-1 二苯乙烯苯單體9的合成.………………………………35 3-5-2 1,3,4-噁二唑單體14的合成……………………………38 3-5-3 模式化合物M1~M4的合成.………………………………39 3-5-4 高分子P1~P3的合成.……………………………………41 3-6 反應原理……………………………………………………42 3-6-1 有機金屬觸媒……………………………………………42 3-6-2 Heck Reaction.…………………………………………43 3-6-3 RAFT活性自由基聚合法…………………………………44 3-6-4 聚芳香醚的合成…………………………………………45 3-7 相對量子產率………………………………………………46 3-8 循環伏安法…………………………………………………46 3-9 元件製作……………………………………………………48 3-9-1 ITO玻璃之清洗.…………………………………………49 3-9-2 ITO玻璃之蝕刻.…………………………………………50 3-9-3 氧電漿處理ITO表面.……………………………………51 3-9-4 高分子發光膜的製作……………………………………51 3-9-5 陰極蒸鍍…………………………………………………54 3-9-6 元件量測…………………………………………………54 第四章 結果與討論 4-1 單體結構之鑑定……………………………………………54 4-2 高分子結構鑑定……………………………………………57 4-3 高分子分子量的測定………………………………………58 4-4 溶解度測試…………………………………………………59 4-5 高分子熱性質分析…………………………………………59 4-5-1 熱重分析…………………………………………………60 4-5-2 微差式掃描熱卡計………………………………………60 4-6 光學性質……………………………………………………61 4-6-1 UV/Vis 吸收光譜.………………………………………61 4-6-2 螢光光譜分析……………………………………………62 4-6-3 濃度效應…………………………………………………63 4-6-4 相對量子效率……………………………………………64 4-6-5 掺合系統…………………………………………………65 4-6-5-1 UV/Vis 吸收光譜.……………………………………65 4-6-5-2 能量轉移………………………………………………65 4-7 電化學性質探討……………………………………………66 4-8 高分子發光二極體(PLED)的元件特性……………………69 4-8-1 電流密度(I)-電場(F)-輝度(L)特性.…………………70 4-8-2 元件表面型態……………………………………………71 第五章 結論………………………………………………………72 參考文獻…………………………………………………………113 自述………………………………………………………………118

    [1] M. Pope , H. Kallmann, P. Magnante, J. Chem. Phys., 38, 2042 (1963).
    [2] C. W. Tang, S. A. Vanslyke, Appl. Phys. Lett., 51, 913 (1987).
    [3] J. H. Burroughes, D. D. C. Bradly, A. R. Brovn, R. N. Morks, K. Mackay,  
       R. H. Friend, P. L. Burmond, A. B. Holmes, Nature, 374, 539 (1990).
    [4] Cimrova, V.; Schmidt, W.; Rulkens, R.; Schulze, M.; Meyer, W.; Neher,  
       D. Adv. Mater., 8, 585 (1996).
    [5] Ho, P. K. H.; Granstrom, M.; Friend, R. H.; Greenham, N. C. Adv. Mater.,     10, 769 (1998).
    [6] McQuade, D. T.; Pullen, A. E.; Swager, T. M. Chem. Rev., 100, 2537 (2000).
    [7] Bao, Z.; Feng, Y.; Dodabalapur, A.; Raju, V. R.; Lovinger, A. J. Chem.  
       Mater., 9, 1299 (1997).
    [8] Chang, S. C.; Bharathan, J.; Yang, Y. Appl. Phys. Lett., 73, 2561 (1998).
    [9] Patil, A. O.; Ikenoue, Y.; Wudl, F.; Heeger, A. J. J. Am. Chem. Soc.,  
       109, 1858 (1987).
    [10] 郎長齡, 諸柏仁;化工雜誌,第四卷第44期,P.67,1997.
    [11] 楊素華;光訊雜誌,第98期,P.29,2002年10月.
    [12] M. Wohlgenannt, K. Tandon, S. Mazumdar, S. Ramasesha, Z. V. Vardeny,
       Nature, 409, 494 (2001).
    [13] 柯崇文, Chemistry, 60, 95 (2002).
    [14] 林顯光;工業材料雜誌,183期,P.169,民國91年3月.
    [15] J. H. Burroughs, D. D. C. Bradley, A. R. Brown, R. N. Marks, K. Markay,
     R. H. Friend, P. L. Burns, and A. B. Holmes, Nature, 347, 539 (1990).
    [16] M. Yan, L. J. Rothberg, F. Papadimitrakopoulos, M. E. Galvin, T. M.
     Miller, Phys. Rev. Lett., 73, 744 (1994).
    [17] E. M. Conwell, Syn. Met., 85, 995 (1997).
    [18] J. W. Blatchford, S. W. Jessen, L.-B. Lin, T. L. Gustafson, D.-K. Fu,
     H.-L. Wang, T. M. Swager, A. G. MacDiarmid, A. J. Epstein, Phys. Rev.
     B, 54, 9180 (1996).
    [19] D.-J. Kim, S.-H. Kim, S.-H. Jin, D.-K. Park, H.-N. Cho, T. Zyung, I.   
       Cho, S.-K. Choi, Eur. Polym. J., 35, 227 (1999).
    [20] Z. H. Kafafi, Organic Light-Emitting Materials and Devices, Bellingham,     Wash., USA: SPIE, pp 139-150 (1997).
    [21] H. K. Kim, M.-K. Ryu, K.-D. Kim, S.-M. Lee, S.-W. Cho, J.-W. Park,    
       Macromolecules, 31, 1114 (1998).
    [22] F. Cacialli, R. H. Friend, W. J. Feast, P. W. Lovenich, Chem. Commun.,     1778 (2001).
    [23] T. S. Novokova, N. N. Barashkov, A. Yassar, M. Hmyene, J. P. Ferraris,      Synth. Met., 83, 47 (1996).
    [24] M. Zheng, A. M. Sarker, E. E. Gürel, P. M. Lahti, F. E. Karasz,    
       Macromolecules, 33, 7426 (2000).
    [25] H. K. Jung1, J. K. Lee1, M. S. Kang1, S. W. Kim, J. J. Kim, S. Y. Park1,     Polymer Bulletin, 43, 13 (1999).
    [26] S. Zheng, J. Shi, R. Mateu, Chem. Mater., 12, 1814 (2000).
    [27] M. Aguiar, F. E. Karasz, L. Akcelrud, Macromolecules, 28, 4598 (1995).
    [28] D. L. Meeker, D. S. K. Mudigonda, J. M. Osborn, D. C. Loveday, J. P.
       Ferraris, Macromolecules, 31, 2943 (1998).
    [29] X.-C. Li, F. Cacialli, M. Giles, J. Grüner, R. H. Friend, A. B. Holmes,     S. C. Moratti, T. M. Yong, Adv. Mater., 7, 898 (1995).
    [30] X.-C. Li, T. M. Yong, J. Grüner, A. B. Holmes, S. C. Moratti, F.    
       Cacialli, R. H. Friend, Synth. Met., 84, 437 (1997).
    [31] M. Greczmiel, P. Strohriegl, Macromolecules, 30, 6042 (1997)..
    [32] J. Sanetra, D. Bogdał, M. Warzała, A. Boroń, Chem. Mater., 14, 89 (2002).
    [33] M. Yang, Q. Ling, M. Hiller, X. Fun, X. Liu, L. Wang, W. Zhang, J.
     Polym. Sci., Part A: Polym. Chem., 38, 3405 (2000).
    [34] G. Moad, J. Chiefari, Y. K. Chong, J. Krstina, R. T. A. Mayadunne, A.
     Postma, E. Rizzardo, S. H. Thang, Polym. Int., 49, 993 (2000).
    [35] J. Chiefari, Y. K. Chong, F. Ercole, J. Krstina, J. Jeffery, T. P. T.      Le, R. T. A. Mayadunne, G. F. Meijs, C. L. Moad, G. Moad, E. Rizzardo,     S. H. Thang, Macromolecules, 31, 5559 (1998).
    [36] K. Matyjaszewski, In Controlled/Living Radical Polymerization-Progress
     in ATRP, NMP and RAFT, K. Matyjaszewski, Ed., ACS Symposium Series   
       768, American Chemical Society, Washington, D. C., 2000, p 2.
    [37] J. Pyun, K. Matyjaszewski, Chem. Mater., 13, 3436 (2001).
    [38] M. K. Georges, R. P. N. Veregin, P. M. Kazmaier, G. K. Hamer,   
       Macromolecules, 26, 2987 (1993).
    [39] D. Benoit, V. Chaplinski, R. Braslau, C. J. Hawker, J. Am. Chem. Soc.,
       121, 3904 (1999).
    [40] C. J. Hawker, A. W. Bosman, E. Harth, Chem. Rev., 101, 3661 (2001).
    [41] K. Matyjaszewski, Macromolecules, 31, 4710 (1998).
    [42] R. Joseph, R. Lakowicz, Principles of Fluorescence Spectroscopy,
       Kluwer Academic/Plenum Publishers, New York, 368 (1999).
    [43] A. A. Lamola, N. J. Turro, Energy Transfer and Organic Photochemistry,     Wiley & Sons, New York, 17 (1969).
    [44] A. Cirpan, L. Ding, F.E. Karasz, Polymer, 46, 811 (2005).
    [45] H. L. Chou, S. Y. Hsu, P. K. Wei, Polymer, 1-4
    [46] L. Ding, F. E. Karasz, Z. Lin, M. Zheng, Macromolecules, 34, 9183 (2001).
    [47] J. H. Park, T. W. Lee, Y. C. Kim, O. O. Park, J. K. Kim, Chem. Phys.   
       Lettter, 403, 293 (2005).
    [48] J. I .Lee, H. Y. Chu, S. H. Kim, L. M. Do, T. Zyung, D. H. Hwang,   
       Optical Materials, 21, 205 (2002).
    [49] L. C. Palilis, D. G. Lidzet, M. Redecker, D. D. C. Bradley, M.   
       Inbasekaran, E. P. Woo, W. W. Wu, Synthetic Metals, 111-112, 159 (2000).
    [50] 楊豐瑜;化工資訊,第三期,P.18,2002.
    [51] W. A. Herrmann, C.-P. Reisinger, Michael Spiegler, Journal of   
       Organometallic Chemistry, 557, 93 (1998).
    [52] J. P. Genet, M. Savignac, Journal of Organometallic Chemistry, 576 , 305     (1999)
    [53] T. Fukuda, A. Goto, In Controlled/Living Radical Polymerization
       -Progress in ATRP, NMP and RAFT, K. Matyjaszewski, Ed., ACS Symposium      Series 768, American Chemical Society, Washington, D. C., 2000, p 27.
    [54] S. Perrier, C. Barner-Kowollik, J. F. Quinn, P. Vana, T. P. Davis,    
       Macromolecules, 35, 8300 (2002).
    [55] A. H. E. Müller, R. Zhuang, D. Yan, G. Litvenko, Macromolecules, 28,       4326 (1995).
    [56] A. H. E. Müller, G. Litvenko, Macromolecules, 30, 1253 (1997).
    [57] J. Chiefari, Y. K. Chong, F. Ercole, J. Krstina, J. Jeffery, T. P. T.  
       Le, R. T. A. Mayadunne, G. F. Meijs, C. L. Moad, G. Moad, E. Rizzardo,      S. H. Thang, Macromolecules, 31, 5559 (1998).
    [58] 余昀澔,”主鏈含孤立發光基及電子傳遞基團高分子的合成與光電性質”, 國立成功    大學化學工程研究所碩士論文,民國92年.
    [59] 王宗櫚、謝達華、何國賢, “聚合物的合成與鑑定法”, (1995).
    [60] Y. Yang, Q. Pei, J. Appl. Phys., 77, 4807 (1995).
    [61] Dong Xiang, Qundong Shen, Suyang Zhang, Xiqun Jiang, Journal of Applied     Polymer Science, 88, 1350 (2003).
    [62] Liang Liao, Yi Pang, Liming Ding, Frank E. Karasz, Macromolecules, 35,      3819 (2002).
    [63] D. Oelkrug, A. Tompert, J. Gierschner, H. J. Egelhaaf, M. Hanack, M.   
       Hohloch, E. Steinhuber, J. Phys. Chem. B, 102, 1902 (1998).

    下載圖示 校內:2006-06-20公開
    校外:2006-06-20公開
    QR CODE