簡易檢索 / 詳目顯示

研究生: 鄺玟豪
Khong, Mun-Hooi
論文名稱: 經由時間延遲通訊網路之單控制器雙向遠端遙控系統
Bilateral Teleoperation Systems with Single Controller over Delayed Communication Network
指導教授: 劉彥辰
Liu, Yen-Chen
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2015
畢業學年度: 103
語文別: 中文
論文頁數: 164
中文關鍵詞: 雙向遠端遙控系統Lyapunov函數中央控制器時間延遲三軸力感測器
外文關鍵詞: Bilateral teleoperation, Lyapunov, single controller, time delays, three-axis force sensor
相關次數: 點閱:157下載:10
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文提出使用單一控制器之新型態雙向遠端遙控系統,遠端機器人與近端機器人之控制器皆在近端操控人員處實現。基於此架構,遠端機器人僅需將位置與速度等輸出指令,經由網路傳輸給在近端機器人之中央控制器;中央控制器計算完控制指令後,再經由網路回傳給遠端機器人。因為遠端機器人處不存在控制器,且只需要傳輸與接收訊號的功能,所以可以顯著的提升整體遠端遙控系統模組化與彈性,擴大應用範圍。
    本論文之中央控制器由P-與PD-控制器實現,P-控制器討論遠端機器人僅回傳位置訊號,而PD-控制器需要同時回傳位置與速度訊號。對於此單一控制器雙向遠端遙控系統之不對稱系統架構,通訊存在包含時間延遲等不確定因素,將造成整體系統追蹤性能甚至穩定性的問題。本論文使用Lyapunov之穩定性分析方法,討論在固定時間延遲(time constant delay)下能量消散時的充分條件,並確保系統之穩定性與任務追蹤。由於延遲可能會隨著網路狀態而改變,所以本論文亦討論P-控制器在網路存在時變時間延遲(time-varying delay)時,相關的穩定性之條件。此外,本論文亦推導出系統在穩態時之力矩回饋,並確認此雙向遠端遙控系統力量回饋之性能。
    本論文首先使用系統模擬分析驗證提出之控制理論,最後以實驗的方法驗證控制器之穩定性,並比較P-控制器與PD-控制器之性能。由於力量回饋為討論雙向遠端遙控性能之重點,所以本論文配合所使用之機器人手臂,設計、分析與製造了三軸力量感測器;經過線性回歸取得此三軸力量感測器估計方程,完成校正後之感測器使用於本論文提出之單一控制器遠端遙控系統,進行力量資訊的量測、紀錄與比較。實驗結果驗證了在提出之充分條件下,除了確保穩定性與任務追蹤之性能,經由對操作人員施力與環境外力之量測結果,更證實了理論分析中環境力量可以準確回饋的結果。

    SUMMARY
    This thesis proposes a novel bilateral teleoperation system by using only one controller that is collocated with the local robot. Without a controller, the position/velocity signals of the remote robot are transmitted to the central controller over a communication network. In this thesis, the central controller is accomplished by using P- and PD-controllers. By utilizing Lyapunov stability analysis, the sufficient condition for ensuring energy dissipation is obtained so that stability and position tracking are guaranteed when the communication network is subject to constant delays. Since it is possible that time delays change with network status, the stability condition for P-controller with time-varying delays is also studied in this thesis. Moreover, force reflection from the remote environment to the human operator via the local robot is proven to be equal to the environmental force when the teleoperation system is in steady state. The proposed control systems for bilateral teleoperators with single control are validated via numerical simulations and experiments. In order to obtain external forces from the human operator and environment, a simple and low-cost force sensor for PHANToM Omni haptic device is developed in this thesis. After calibration by using simple linear regression, the three-axis force sensor is utilities to record the force information in the experiment.

    圖目錄 1 表目錄 5 第一張 緒論 6 1.1 研究背景與文獻回顧 6 1.2 研究動機與目的 10 1.3 論文架構 11 第二章 理論背景與系統介紹 13 2.1 Lyapunov理論 13 2.1.1 非自主系統穩定性 13 2.1.2 Lyapunov函數與基本定理[1] 15 2.1.3 Baralat's Lemma[2] 16 2.2 被動性原理[1] 17 2.3 機械手臂系統 18 2.3.1 Euler-Lagrange函數 18 2.3.2 機械手臂之動態方程式 19 2.3.3 動力方程特性 20 2.3.4 運動Jacobian(Kinematic Jacobian) 21 2.3.5 二連桿機械手臂動力方程 22 2.4 雙向遠端遙控系統 23 2.4.1 散射波轉換(Scattering Transformation)23 2.4.2 P-控制器與PD-控制器 27 2.4.3 適應性控制 30 第三章 P-與PD-控制器設計與系統分析 32 3.1 P-控制器設計與系統分析 32 3.1.1 P-控制器設計 33 3.1.2 固定時間延遲(Constant Delays) 36 3.1.3 時變時間延遲(Time-Varying Delays)47 3.2 PD-控制器設計與系統分析 57 3.2.1 PD-控制器設計 57 3.2.2 固定時間延遲(Constant Delays)58 3.3 結論與討論 68 第四章 三軸力感測器設計與系統整合 71 4.1 機構設計 71 4.2 系統整合 75 4.2.1 觸力感測器 76 4.2.2 放大與類比轉數位模組 78 4.2.3 微除利息控制器(Arduino)79 4.2 校正方法與結果 80 4.3.1 簡單線性回歸(Simple Linear Regression)80 第五章 實驗架設與結果 85 5.1 PHANToM Omni 六軸機器人 85 5.2 力量感測器 88 5.2.1 旋轉矩陣(Rotation Matrix)88 5.2.2 端點量測轉換 90 5.3 實驗架構 91 5.4 P-控制器實驗結果 95 5.4.1 固定時間延遲 95 5.4.2 時變時間延遲 98 5.5 PD-控制器實驗結果 102 5.5.1 固定時間延遲 102 5.5.2 時變時間延遲 105 5.6 實驗結果與討論 109 第六章 結果與未來展望 111 6.1 結論 111 6.2 未來展望 112 參考文獻 113 附錄 116 A. P-控制器的條件式子推導 117 B. PD-控制器的條件式子推導 122 C. 三軸力感測器設計圖 124 D. 力量感測器程式 131 E. 實驗程式 140 F. 符號表 163

    [1] H. K. Khalil. Nonlinear Systems (Third Edition). Prentice Hall, 1996.

    [2] M. French, C. Szepesvari, and E. Rogers. Performance of Nonlinear Approximate Adaptive Controllers. Wiley, 2003.

    [3] A. Rodriguez-Angeles, J. L. Guzman-Gutierrez, and C. Cruz-Villar. User wearable interface based on inertial sensors for unilateral master-slave robot teleoperation. In 7th International Conference on Electrical Engineering Computing Science and Automatic Control (CCE), pages 458-463, Sept. 2010.

    [4] P. F. Hokayem and M. W. Sponge Bilateral teleoperation: An historical survey. Automatica, 42(12):2035-2057, 2006.

    [5] T. B. Sheridan. Teleoperation, telerobotics and telepresence: A progress report. International Federation of Automatic Control, 3(2):205-214, 1995.

    [6] T. B. Sheridan. Space teleoperation through time delay: review and prognosis. IEEE Transactions on Robotics and Automation, 9(5):592-606, 1993.

    [7] M. Ishii, S. Oshiro, and T. Itoh. The development and utilization of the "underwater backhoe," a multifunctional underwater construction machine. In IEEE Proceedings of Underwater Technology, pages 319-322, May 2000.

    [8] T. Hirabayashi, J. Akizono, T. Yamamoto, H. Sakai, and H. Yano. Teleoperation of construction machines with haptic information for underwater applications. In 21st International Symposium on Automation and Robotics in Construction, volume 15 pages 563—570, 2006.

    [9] J. Akizono, T. Tanaka, H. Sakai, T. Hirabayashi, T. Yamamoto, M. Utsumi, and K. Shirai. Future view of advanced investigation and construction work in port area. In IEEE Proceedings of Underwater Technology, pages 355-362, April 2004.

    [10] D. J. Todd. Fundamentals of Robot Technology: An Introduction to Industrial Robots, Teleoperators and Robot Vehicles. Springer Science and Business Media 2012.

    [11] T. B. Sheridan and W. R. Ferrell. Remote manipulative control with transmission delay. IEEE Transactions on Human Factors in Electronics, 1963. HFE-4(1):25-29, 1963.

    [12] W. R. Ferrell. Remote manipulation with transmission delay. IEEE Transactions on Human Factors in Electronics, HFE-6(1):24-32, 1965.

    [13] W. R. Ferrell and T. B. Sheridan. Supervisory control of remote manipulation. IEEE Transactions on Human Factors in Electronics, 4(10):81-88, 1967.

    [14] R. J. Anderson and M. W. Sponge Bilateral control of teleoperators with time delay. IEEE Transactions on Automatic Control, 34(5):494-501, 1989.

    [15] R. J. Anderson and M. W. Sponge Asymptotic stability for force reflecting teleoperators with time delay. The International Journal of Robotics Research, 11(2):135-149, 1992.

    [16] G. Niemeyer. Telemanipulation with time delays. The International Journal of Robotics Research, 23(9):873-890, 2004.

    [17] E. Nuno, L. Basanez, and R. Ortega. Passive bilateral teleoperation framework for assisted robotic tasks. In IEEE International Conference on Robotics and Automation, pages 1645-1650, April 2007.

    [18] N. A. Tanner and G. Niemeyer. Improving perception in time-delayed telerobotics. The International Journal of Robotics Research, 24(8):631-644, 2005.

    [19] S. Munir and W. J. Book. Internet-based teleoperation using wave variables with prediction. IEEE/ASME Transactions on Mechatronics, 7(2):124-133, 2002.

    [20] C. Secchia, S. Stramigiolib, and C. Fantuzzia. Variable delay in scaled port-Hamiltonian telemanipulation. In 8th International IFAC Symposium on Robot Control, Mechatronics, volume 18, pages 357-363, 2008.

    [21] N. Chopra R. Lozano and M. W. Sponge Passivation of force reflecting bilateral teleoperators with time-varying delay. In Proceedings Mechatronics, pages 24-26 June 2002.

    [22] N. Chopra, M. W. Spong, S. Hirche, and M. Buss. Bilateral teleoperation over the internet: The time varying delay problem. In Proc. American Control Conference, pages 155-160, June 2003.

    [23] N. Chopra, M. W. Spong, R. Ortega, and N. E. Barabanov. On tracking performance in bilateral teleoperation. IEEE Transactions on Robotics, 22(4):861-866, 2006.

    [24] D. J. Lee, M. W. Spong, S. Hirche, and M. Buss. Passive bilateral control of teleoperators under constant time delay. In Proceedings of the IFAC World Congress, 2005.

    [25] D. J. Lee M. W. Spong. Passive bilateral teleoperation with constant time delays. IEEE Transactions on Robotics, 22(2):2142-2148, 2006.

    [26] E. Nuno, R. Ortega, and N. Barabanov. A globally stable pd controller för bilateral teleoperators. IEEE Transactions on Robotics, 24(3):753-758, 2008.

    [27] E. Nuno R. Ortega, and M. W. Spong. Position tracking for non-linear teleoperators with variable time delay. International Journal of Robotics Research, 28(7):895-910, 2009.

    [28] G. Niemeyer and J. J. E. Slotine. Stable adaptive teleoperation. IEEE Journal of Oceanic Engineering, 16(1):152-162, 1991.

    [29] N. Chopra, M. W. Spong, and R. Lozano. Synchronization of bilateral teleoperators with time delay. Automatica, 44(8):2142-2148, 2008.

    [30] Y.-C Liu and M.-H. Khong. Adaptive control for nonlinear teleoperators with uncertain kinematics and dynamics. In IEEE International Conference on Automation Science and Engineering (CASE), pages 271-276, Aug. 2013.

    [31] E. Nuno, L. Basanez, and R. Ortegac. Passivity-based control for bilateral teleoperation: A tutorial. Automatica, 47(3):485-495, 2011.

    [32] Y.-C. Liu and N. Chopra. Gravity-compensation-driven position regulation for robotic systems under input/output delays. IEEE Transactions on Control Systems Technology, 22(3):995-1005, 2014.

    [33] N. Chopra. Control of robotic manipulators with input or output delays. In American Control Conference, pages 2024-2029, Jun 2009.

    [34] N. Chopra. Control of robotic manipulators under time-varying sensing-control delays. In International Conference on Robotics and Automation (ICRA), pages 1768-1773, May 2010.

    [35] Y.-C Liu and N. Chopra. Control of robotic manipulators under input/output communication delays: Theory and experiments. IEEE Transactions on Robotics, 28(3):742-751, 2012.

    [36] S.-M. Puah and Y.-C. Liu. Discrete-time control framework for robots over unreliable packet-switching communication network. In Proceedings IEEE Conference on Control and Automation, pages 892-897, June 2014.

    [37] M. W. Spong and M. Fujita. Control in Robotics. in The Impact of Control Technology: Overview, Success Stories, and Research Challenges (T. Samad and A. Annaswamy, eds.), IEEE Control Systems Society, 2011.

    [38] M. W. Spong, S. Hutchinson, and M. Vidyasagar. Robot Modeling and Control. Wiley, 2006.

    [39] C. C. Cheah, C. Liu, and J. J. E. Slotine. Adaptive tracking control for robots with unknown kinematic and dynamic properties. The International Journal of Robotics Research, 25(3):283-296, Mar. 2006.

    [40] Adriaan van den Bose Parameter Estimation for Scientists and Engineers. John Wiley & Sons, Inc., 2007.

    [41] B. Basilio and M. Indri. Friction compensation in robotics: an overview. In 44th IEEE Conference on Decision and Control, 2005 and 2005 European Control Conference, pages 4360-4367, Dec. 2005.

    [42] 貿澤電子(代理公司之一:Mouser Electronics). http:/ www.mouser.com/.

    [43] 海芯科技( AVIA Semicondutor ) . http:// www.aviaic.com/enindex.asp.

    [44] C. Montgomery Douglas, A. Peck Elizabeth, and Vining G.Geoffrey. Introduction to Linear Regression Analysis. John Wiley & Sons, Inc., 5 edition, 2007.

    [45] Y.-C. Liu and N. Chopra. Synchronization of networked mechanical systems with communication delays and human input. Journal of Dynamic Systems, Measurement, and Control, 135(4), 2013.

    [46] OpenHaptics Toolkit version 2.0. SensAble Technologies, MA, 2005.

    下載圖示 校內:2020-07-01公開
    校外:2020-07-01公開
    QR CODE