簡易檢索 / 詳目顯示

研究生: 張道民
Chang, Tao-Min
論文名稱: 氧化石墨烯自組裝建構奈米通道之離子電動傳輸現象探討
Investigation of Electrokinetic Ion Transport in Self-Assembled Graphene Oxide Nanochannels
指導教授: 楊瑞珍
Yang, Ruey-Jen
學位類別: 碩士
Master
系所名稱: 工學院 - 工程科學系
Department of Engineering Science
論文出版年: 2018
畢業學年度: 106
語文別: 中文
論文頁數: 59
中文關鍵詞: 氧化石墨烯奈米通道表面電荷質子遷移率
外文關鍵詞: Graphene oxide, Nanochannel, Surface charge density, Proton mobility
相關次數: 點閱:134下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究主要在探討二維材料氧化石墨烯,鑑定其組成奈米通道之結構,著重於分析氧化石墨烯奈米通道中離子電動傳輸的現象,以往文獻只有公布量測結果,並未深入探討。在理論分析上,本研究從氧化石墨烯解離的官能基群著手,計算其解離的官能基數,配合電雙層理論,即可得到其表面電荷密度的大小,也可以瞭解離子在奈米通道中的分布情形,進而推導出其電導值。接著透過實驗做出自組裝的奈米通道,隨著控制奈米通道的高度,量測不同濃度之氯化鉀水溶液、鹽酸下的電導值。透過討論實驗與理論的結果,探討在這種次奈米高度通道中的質子遷移率,並引證相關文獻,發現氧化石墨烯通道中有整齊的水分子排列與官能基團這些有組織的氫鍵結構導致更高的質子遷移率,以及在較高的表面電荷密度下,通道中電滲流對電導的貢獻會因為滑移效應的存在而被放大。透過此研究,可以更加清楚流體在奈米通道之行為,並於最後闡述未來對氧化石墨烯的研究方向,分析氧化石墨烯獨特的特性可以應用於哪些領域上。

    This study mainly investigates two-dimensional material-graphene oxide, identifies the structure of graphene oxide nanochannels, and focuses on the analysis of ionized electrokinetic transport in graphene oxide nanochannels. Previous literatures only displayed the results but did not discuss the mechanism behind it. First, we begin with the discussion about the dissociated functional groups about the graphene oxide. In conjunction with the number of dissociated functional groups and the electric double layer theory, surface charge density and the distribution of ions in the nanochannel can be obtained. Therefore the conductance values can be derived, and be used for theoretical analysis. Second, the self-assembled graphene nanochannels were made experimentally. We controlled the height of the nanochannels during fabrication and measured the conductance of the nanochannels under different concentrations of potassium chloride aqueous solution and hydrochloric acid. Then, we discuss results obtained from both experiments and theories. We inferred that proton hopping benefits from the organized hydrogen-bond network due to the presence of structured water and functional groups, yielding a higher proton mobility in GO nanochannels. Slip-enhanced conductance from EO in GO nanochannel becomes significant at high surface charge density. Through this study, the behavior of fluids in the nanochannel can be more clearly understood.

    中文摘要I 致謝IX 內容目錄X 圖目錄XII 表目錄XVI 縮寫說明XVII 第一章緒論1 1.1簡介1 1.2氧化石墨烯2 1.3文獻介紹4 1.4研究動機與目的8 1.5論文架構9 第二章原理10 2.1電雙層效應10 2.2離子在奈米通道中電導值估計12 第三章實驗材料與方法18 3.1實驗儀器介紹18 3.2薄膜製作26 3.3儀器分析28 3.4電性量測30 第四章結果與討論35 4.1氧化石墨烯薄膜鑑定分析35 4.2離子水溶液於氧化石墨烯奈米通道之電性量測38 第五章結論與展望54 5.1結論54 5.2未來展望54 參考文獻56

    Abraham, J., Vasu, K. S., Williams, C. D., Gopinadhan, K., Su, Y., Cherian, C. T., Dix, J., Prestat, E., Haigh, S. J., Grigorieva, I. V., Nair, R. R., Geim, A. K. & Carbone, P. Tunable sieving of ions using graphene oxide membranes. Nature Nanotechnology, 12(6), 546-550. (2017).
    Behrens, S. H., & Grier, D. G. The charge of glass and silica surfaces. The Journal of Chemical Physics, 115(14), 6716-6721. (2001).
    Chang, C. C., Yang, R. J., Wang, M., Miau, J. J., & Lebiga, V. Liquid flow retardation in nanospaces due to electroviscosity: Electrical double layer overlap, hydrodynamic slippage, and ambient atmospheric CO2 dissolution. Physics of Fluids, 24(7), 072001. (2012).
    Chen, C., Yang, Q. H., Yang, Y., Lv, W., Wen, Y., Hou, P. X., Wang, M. & Cheng, H. M. Self‐Assembled Free‐Standing Graphite Oxide Membrane. Advanced Materials, 21(29), 3007-3011. (2009).
    Cheng, X. Q., Wang, Z. X., Jiang, X., Li, T., Lau, C. H., Guo, Z., Ma, J. & Shao, L. Towards sustainable ultrafast molecular-separation membranes: From conventional polymers to emerging materials. Progress in Materials Science. (2017).
    Chinen, H., Mawatari, K., Pihosh, Y., Morikawa, K., Kazoe, Y., Tsukahara, T., & Kitamori, T. Enhancement of Proton Mobility in Extended‐Nanospace Channels. Angewandte Chemie International Edition, 51(15), 3573-3577. (2012).
    Cohen-Tanugi, D., & Grossman, J. C. Water desalination across nanoporous graphene. Nano Letters, 12(7), 3602-3608. (2012).
    Compton, O. C., & Nguyen, S. T. Graphene oxide, highly reduced graphene oxide, and graphene: versatile building blocks for carbon‐based materials. Small, 6(6), 711-723. (2010).
    Duan, C., & Majumdar, A. Anomalous ion transport in 2-nm hydrophilic nanochannels. Nature Nanotechnology, 5(12), 848. (2010).
    Feng, J., Graf, M., Liu, K., Ovchinnikov, D., Dumcenco, D., Heiranian, M., Nandigana, V., Aluru, N. R., Kis, A. & Radenovic, A. Single-layer MoS 2 nanopores as nanopower generators. Nature, 536(7615), 197. (2016).
    Gaughran, J., Boyle, D., Murphy, J., & Ducrée, J. Graphene Oxide membranes for phase-selective microfluidic flow control. In Micro Electro Mechanical Systems (MEMS), 2015 28th IEEE International Conference on (pp. 2-5). IEEE. (2015).
    Han, Y., Xu, Z., & Gao, C. Ultrathin graphene nanofiltration membrane for water purification. Advanced Functional Materials, 23(29), 3693-3700. (2013).
    Huang, H., Song, Z., Wei, N., Shi, L., Mao, Y., Ying, Y., Sun, L., Xu, Z. & Peng, X. Ultrafast viscous water flow through nanostrand-channelled graphene oxide membranes. Nature Communications, 4, 2979. (2013).
    Hung, W. S., An, Q. F., De Guzman, M., Lin, H. Y., Huang, S. H., Liu, W. R., Hu, C. C., Lee, K. R.& Lai, J. Y. Pressure-assisted self-assembly technique for fabricating composite membranes consisting of highly ordered selective laminate layers of amphiphilic graphene oxide. Carbon, 68, 670-677. (2014a).
    Hung, W. S., Tsou, C. H., De Guzman, M., An, Q. F., Liu, Y. L., Zhang, Y. M., Hu, C. C., Lee, K. R. & Lai, J. Y. Cross-linking with diamine monomers to prepare composite graphene oxide-framework membranes with varying d-spacing. Chemistry of Materials, 26(9), 2983-2990. (2014b).
    Konkena, B., & Vasudevan, S. Understanding aqueous dispersibility of graphene oxide and reduced graphene oxide through p K a measurements. The Journal of Physical Chemistry Letters, 3(7), 867-872. (2012).
    Li, Y., Gao, W., Ci, L., Wang, C., & Ajayan, P. M. Catalytic performance of Pt nanoparticles on reduced graphene oxide for methanol electro-oxidation. Carbon, 48(4), 1124-1130. (2010).
    Miansari, M., Friend, J. R., & Yeo, L. Y. Enhanced Ion Current Rectification in 2D Graphene‐Based Nanofluidic Devices. Advanced Science, 2(6). (2015).
    Miansari, M., Friend, J. R., Banerjee, P., Majumder, M., & Yeo, L. Y. Graphene-based planar nanofluidic rectifiers. The Journal of Physical Chemistry C, 118(38), 21856-21865. (2014).
    Nair, R. R., Wu, H. A., Jayaram, P. N., Grigorieva, I. V., & Geim, A. K. Unimpeded permeation of water through helium-leak–tight graphene-based membranes. Science, 335(6067), 442-444. (2012).
    Neto, A. C., Guinea, F., Peres, N. M., Novoselov, K. S., & Geim, A. K. The electronic properties of graphene. Reviews of Modern Physics, 81(1), 109. (2009).
    Novoselov, K. S., Geim, A. K., Morozov, S. V., Jiang, D., Zhang, Y., Dubonos, S. V., Grigorieva, I. V., & Firsov, A. A. Electric field effect in atomically thin carbon films. Science, 306(5696), 666-669. (2004).
    Paulauskas, M. Pervaporation Using Graphene Oxide Membranes. Doctoral Dissertation, University of Leeds. (2015).
    Radisavljevic, B., Radenovic, A., Brivio, J., Giacometti, I. V., & Kis, A. Single-layer MoS 2 transistors. Nature Nanotechnology, 6(3), 147. (2011).
    Raidongia, K., & Huang, J. Nanofluidic ion transport through reconstructed layered materials. Journal of The American Chemical Society, 134(40), 16528-16531. (2012).
    Ren, W., & Cheng, H. M. The global growth of graphene. Nature Nanotechnology, 9(10), 726. (2014).
    Schoch, R. B., Han, J., & Renaud, P. Transport phenomena in nanofluidics. Reviews of Modern Physics, 80(3), 839. (2008).
    Sun, P., Liu, H., Wang, K., Zhong, M., Wu, D., & Zhu, H. Ultrafast liquid water transport through graphene-based nanochannels measured by isotope labelling. Chemical Communications, 51(15), 3251-3254. (2015).
    Tsou, C. H., An, Q. F., Lo, S. C., De Guzman, M., Hung, W. S., Hu, C. C., Lee, K. R., &Lai, J. Y. Effect of microstructure of graphene oxide fabricated through different self-assembly techniques on 1-butanol dehydration. Journal of Membrane Science, 477, 93-100. (2015).
    Tunuguntla, R. H., Henley, R. Y., Yao, Y. C., Pham, T. A., Wanunu, M., & Noy, A. Enhanced water permeability and tunable ion selectivity in subnanometer carbon nanotube porins. Science, 357(6353), 792-796. (2017).
    Vlassiouk, I., Smirnov, S., & Siwy, Z. Ionic selectivity of single nanochannels. Nano Letters, 8(7), 1978-1985. (2008).
    Xie, Q., Alibakhshi, M. A., Jiao, S., Xu, Z., Hempel, M., Kong, J., Park, H. G. & Duan, C. Fast water transport in graphene nanofluidic channels. Nature Nanotechnology, 13(3), 238. (2018).
    Yasuda T. and Watanabe M. MRS Bulletin, 38, 560-566. (2013).
    杨永岗, 陈成猛, 温月芳, 杨全红, & 王茂章. 氧化石墨烯及其与聚合物的复合. 新型炭材料, 23(3), 193-200. (2008).

    無法下載圖示 校內:2020-12-30公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE