| 研究生: |
王茹立 Wang, Ju-Li |
|---|---|
| 論文名稱: |
不同熱處理與鋇鈦比對鈦酸鋇粉末粒徑大小、結晶相、相轉換溫度及介電常數之影響 Effects of Heat Treatment and Ba/Ti Ratio on Particle Size, Crystalline Phase, Curie Temperature and Dielectric Constant of BaTiO3 Powder |
| 指導教授: |
黃啟原
Huang, Chi-Yuang |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 資源工程學系 Department of Resources Engineering |
| 論文出版年: | 2009 |
| 畢業學年度: | 97 |
| 語文別: | 中文 |
| 論文頁數: | 94 |
| 中文關鍵詞: | 鋇鈦比 、粒徑 、結晶相 、居禮溫度 、介電常數 |
| 外文關鍵詞: | crystalline phase, particle size, Ba/Ti ratio, curie temperature, dielectric constant |
| 相關次數: | 點閱:92 下載:10 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
鈦酸鋇因具有良好的介電性質,而被廣泛地運用在多層陶瓷電容器、熱敏電阻等電子產品。鈦酸鋇的微結構、結晶相、相轉換溫度以及介電性質等,容易因 Ba/Ti 比以及粒徑的改變而有不同的表現,因此了解 Ba/Ti 比和粒徑對鈦酸鋇性質的影響為相當重要的課題。故本研究將設計不同 Ba/Ti 比之起始粉末,搭配不同的熱處理條件,合成單一相並具有相同粒徑之不同 Ba/Ti 比的非計量比鈦酸鋇粉末,以了解兩者對粉末結晶相、相轉換溫度以及介電常數的影響。
由實驗結果得知,Ti-excess 之鈦酸鋇粉末,其固溶極限範圍較 Ba-excess 之鈦酸鋇粉末大,原因為形成 Ti-O Schottky defect所需之活化能較大,故單一相之 Ba-excess 鈦酸鋇粉末較難合成。觀察粉末之微結構發現,Ba-excess 之鈦酸鋇粉末約在 1050℃ 開始有 necking 現象發生,而 Ti-excess 之鈦酸鋇粉末開始發生 necking 之溫度更高,約在 1300℃ 左右,此結果証實非計量比鈦酸鋇鈦粉末之粒徑成長,控制於鈦空缺及鈦原子之擴散速率,而鈦原子所需之擴散活化能更高,故Ti-excess 之鈦酸鋇粉末需於更高之溫度下進行熱處理,其粒徑才有明顯之變化。
本研究控制 Ba-excess 與 Ti-excess 之粉末於低溫下合成粒徑大小相似之鈦酸鋇粉末,發現其正方性與相轉換所需能量,隨著鋇鈦比偏離計量比而有降低之趨勢,相轉換溫度往低溫偏移;於高溫下合成時,因不同 Ba/Ti 比之鈦酸鋇粉末粒徑差異較大,故Ba-excess 之鈦酸鋇粉末之正方性與相轉換所需能量隨著粒徑變大而有增加之趨勢,相轉換溫度往高溫偏移。此結果顯示,粉末之正方性、相轉換溫度及相轉換能量皆受到鋇鈦比及粒徑大小影響,但因熱處理溫度不同,影響程度並不相同。
選擇於 1000℃-2 h 熱處理後粒徑相似之粉末進行介電常數量測。由實驗結果推測,鈦酸鋇粉末之介電常數應到受粉末之正方性與粉末之成分影響。由於 Ba/Ti 比 = 0.9985 之粉末其正方性較高,亦較接近計量比,故於常溫下之介電常數較高。
選擇粒徑相似之粉末經過造粒並加壓成型後,進行燒結測試並量測介電常數。由實驗結果推測,非計量比鈦酸鋇陶瓷體之介電常數應受起使粉之粒徑與燒結後之晶粒大小影響較為明顯,故 Ba/Ti 比 = 0.9837 之陶瓷體因晶粒分布均勻,故介電常數較高。
Barium titanate is a dielectric and ferroelectric material that used widely in electrical applications, including multilayer ceramics capacitors (MLCCs), PTCR thermistors, etc. Moreover, the microstructure, crystalline phase, Curie temperature and dielectric constant of barium titanate are affected easily by Ba/Ti ratio and particle size. In order to realize the effects of Ba/Ti ratio on BaTiO3 powder, high purity BaCO3 and TiO2 were used to synthesize non-stoichiometric BaTiO3 via solid state reaction, and tried different heating parameters to control the BaTiO3 powder with similar particle size in this study.
After analyzing the powder with similar particle size, the tetragonality decreases and the Curie temperature shifts to lower temperature when Ba/Ti ratio strays from 1. The dielectric constant of BaTiO3 powder is also measured in this study. The dielectric constant shows higher when Ba/Ti ratio is closed to stoichiometry.
The dielectric constant of bulk is measured. The dielectric constant of bulk with Ba/Ti ratio = 0.9837 is higher than each other just because that with grain size about 0.7 ~1 m, moreover, the distribution of grain size is quit homogeneous.
1. A. J. Moulson and J. M. Herbert, Electroceramics : Materials, Properties, and Applications, Chapman and Hall, New York, 1990.
2. B. Jaffe, W. R. Cook, Jr. and H. Jaffe, Piezoelectric Ceramics, William R. Cook, Jr. and Hans Jaffe Gould Inc., Cleveland, Ohio, U. S. A., 1971.
3. W. D. Kingery, H. K. Bowen, and D. R. Uhlmann, Introduction to Ceramics, John Wiley and Sons, New York, 1976.
4. L. C. Dufour, C. Monty, and G. P. Ervas., Surface and Interfaces of Ceramic Materials, pp. 521-533, Kuwer Academic, Bosten, 1989.
5. R. C. Garvie, “Stabilization of the Tetragonal Structure in Zirconia Microcrystal,” J. Phys. Chem., 82, 218-224 (1978).
6. P. Boch and J. C. Niepce, Ceramic Materials : Processes, Properties and Applications, ISTE, London, 2007.
7. K. Uchino, E. Sadanaga, and T. Hirose, “Dependence of the Crystal Structure on Particle Size in Barium Titanate,” J. Am. Ceram. Soc., 72 [8] 1555-1558 (1989).
8. B. D. Begg, E. R. Vance, and J. Nowotny, “Effect of Particle Size on the Room-Tmperature Crystal Structure of Barium Titanate,” J. Am. Ceram. Soc., 77 [12] 3186-3192 (1994).
9. Y. H. Hu, M. P. Harmer, and D. M. Smyth, “Solubility of BaO in BaTiO3,” J. Am. Ceram. Soc., 68 [7] 372-376 (1985).
10. S. Lee, C. A. Randall, and Z. K. Liu, “Modified Phase Diagram for the Barium Oxide-Titanium Dioxide System for the Ferroelectric Barium Titanate,” J. Am. Ceram. Soc., 90 [8] 2589-2594 (2007).
11. G. V. Lewis, C. R. A. Catlow, and R. E. W. Casselton, “PTCR Effect in BaTiO3,” J. Am. Ceram. Soc., 68 [10] 555-558 (1985).
12. M. T. Buscaglia, V. Buscaglia, M. Vivinai, and P. Nanni, “Atomistic Simulation of Dopant Incorporation in Barium Titanate,” J. Am. Ceram. Soc., 84 [2] 376-384 (2001).
13. K. M. Hardtl and R. Wernicke, Solid State Commun., 10, 153 (1972).
14. S. Lee, Z. K. Liu, M. H. Kim, and C. A. Randall, “Influence of Nonstoichiometry on Ferroelectric Phase Transition in BaTiO3,” J. Appl. Phys., 101, 054119 (2007).
15. 汪建民,材料分析,中國材料科學學會,台灣台北,2002。
16. J. D. Freire and R. S. Katiyar, “Lattice Dynamics of Crystals with Tetragonal BaTiO3 Structure,” Phys. Rev. B, 37 [4] 2074-2085 (1988).
17. G. Burn and B. A. Scott, “Lattice Modes in Ferroelectric Perovskite : PbTiO3,” Phys. Rev. B, 7 [7] 3088-3101 (1973).
18. J. T. Last, “Infrared-Absorption Studies on Barium Titanate and Related Materials,” Phys. Rev., 105 [6] 1740-1750 (1957).
19. U. D. Venkateswaran, V. M. Naik, and R. Naik, “High-Pressure Raman Studies of Polycrystalline BaTiO3,” Phys. Rev. B, 58 [21] 14256-14260 (1998).
20. T. Hoshina, H. Kakemoto, Takaaki, S. Wada, and M. Yashima, “Size and Temperature Induced Phase Transition Behaviors of Barium Titanate Nanoparticles,” J. Appl. Phys., 99, 054311 (2006).
21. B. D. Begg, S. Kim, Finnie, and E. R. Vance, “Raman Study of the Relationship between Room-Temperature Tetragonality and the Curie Point of Barium Titanate,” J. Am. Ceram. Soc., 79 [10] 2666-2672 (1996).
22. T. Noma, S. Wada, M. Yano, and T. Suzuki, “Analysis of Lattice Vibration in Fine Particles of Barium Titanate Single Crystal Including the Lattice Hydroxyl Group,” J. Appl. Phys., 80 [9] 5223 (1996).
23. S. Wada, M. Yano, T. Suzuki, and T. Noma, “Crystal Structure of Barium Titanate Fine Particles Including Mg and Analysis of Their Lattice Vibration,” J. Mater. Sci., 35, 3889-3902 (2000).
24. G. Arlt, D. Hennings, and G. de With, “Dielectric Properties of Fine-Grained Barium Titanate Ceramics,” J. Appl. Phys., 58 [4] 1619-1625 (1985).
25. Pascal Pinceloup, Christian Courtois, Anne Leriche, and Bernard Thierry, “Hydrothermal Synthesis of Nanometer-Sized Barium Titanate Powders: Control of Barium/Titanium Ratio, Sintering, and Dielectric Properties,” J. Am. Ceram. Soc., 82 [11] 3049-3056 (1999).
26. J. K. Lee, K. S. Hong, and J. W. Jang, “Roles of Ba/Ti Ratios in the Dielectric Properties of BaTiO3 Ceramics,” J. Am. Ceram. Soc., 84 [9] 2001-2006 (2001).
27. J. Paletto, G. Grange, R. Goutte, and L. Eyraud, “A Study of the Dielectric Properties of Powdered BaTiO3,” J. Phys. D : Appl. Phys. 7 [78] (1974).
28. H. G. Lee and H. G. Kim, “Ceramic Particle Size Dependence of Dielectric and Piezoelectric Properties of Pizeoelectric Ceramic-Polymer Composition,” J. Appl. Phys., 67 [4] 2024-2028 (1990).
29. V. Petrovsky, A. Manohar, and F. Dogan, “Dielectric Constant of Particles Determined by Impedance Spectroscopy,” J. Appl. Phys., 100, 014102 (2006).
30. V. Petrovsky, T. Petrovsky, S. Kamlapurkar, and F. Dogan, “Characterization of Dielectric Particles by Impendance Spectroscopy (Part Ι),” J. Am. Ceram. Soc., 91 [6] 1814-1816 (2008).
31. V. Petrovsky, T. Petrovsky, S. Kamlapurkar, and F. Dogan, “Physical Modeling and Electrodynamic Characterization of Dielectric Slurries by Impendance Spectroscopy (Part II),” J. Am. Ceram. Soc., 91 [6] 1817-1819 (2008).
32. V. Petrovsky, T. Petrovsky, S. Kamlapurkar, and F. Dogan, “Dielectric Constant of Barium Titanate Powders Near Curie Temperature,” J. Am. Ceram. Soc., 91 [11] 3590-3592 (2008).
33. C. Y. Huang, Thermal Expansion Behavior of Sodium Zirconium Phosphate Structure Type Materials, Ph. D. Thesis, The Pennsylvania State University, U. S. A. (1990).
34. W. Maison, R. Kleeberg, R. B. Heimann, and S. Phanichphant, “Phase Content, Tetragonality, and Crystallite Size of Nanoscaled Barium Titanate Synthesized by the Catecholate Process: Effect of Calcination Temperature,” J. Euro. Ceram. Soc., 23, 127-132 (2003).
35. 向性一,鈦酸鋇粉末鐵電區與介電性質之研究,國立成功大學礦冶及材料研究所博士論文,民國 84 年。
36. 杜明婷,鋇鈦比對於鈦酸鋇粉末晶粒大小及結晶相之影響,國立成功大學資源工程研究所碩士論文,民國 97 年。
37. A. Beauger, J. C. Mutin, and J. C. Niepce, “Synthesis Reaction of Metatitanate BaTiO3 – Part 1 Effect of the Gaseous Atmosphere Upon the Thermal Evolution of the System BaCO3 – TiO2,” J. Mater. Sci., 18, 3041-3046 (1983).
38. A. Beauger, J. C. Mutin, and J. C. Niepce, “Synthesis Reaction of Metatitanate BaTiO3 – Part 2 Study of Solid – Solid Reaction Interface,” J. Mater. Sci., 18, 3543-3550 (1983).
39. L. K. Templeton and J. A. Pask, “Formation of BaTiO3 from BaCO3 and TiO2 in Air and in CO2,” J. Am. Ceram. Soc., 42 [5] 212-216 (1985).