| 研究生: |
吳思穎 Wu, Szu-Ying |
|---|---|
| 論文名稱: |
改質及鹼激發花崗岩礦泥營建材料之物理性質 Physical Properties of Construction Materials Made from Organo-Modified and Alkali–Activated Granite Sludge |
| 指導教授: |
黃忠信
Huang, Jong-Shin |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 土木工程學系 Department of Civil Engineering |
| 論文出版年: | 2019 |
| 畢業學年度: | 107 |
| 語文別: | 中文 |
| 論文頁數: | 104 |
| 中文關鍵詞: | 花崗岩礦泥 、資源化 、鹼激發膠結材 、高強度 、改質 、防水 |
| 外文關鍵詞: | granite sludge, Alkali-Activated, Organo-modified, high strength, waterproof |
| 相關次數: | 點閱:136 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
石材加工業為台灣之一重要傳統出口產業,但台灣石材加工業所選用石材原料皆需仰賴進口取得,一般成本價格昂貴;再加上石材使用上具有細部研磨之需求,導致石材研磨所生成礦泥量較高於石材裁切廢料,因此,石材廢棄物之再利用,早已成為業者重視的議題,但由於現有石材礦泥廢棄物的資源化方式,期經濟效益較低,尤其多將石材礦泥應用於惰性填充材料,其附加價值更低。本研究將利用石材礦泥廢棄物中產量較多的花崗岩礦泥,藉由鹼激發及改質等方法加以處理,期望提供花崗岩礦泥另一資源化之應用途徑,使得花崗岩礦泥能成功流向二次性營建材料市場,達到循環經濟之目的。
本研究所嘗試鹼激發處理方式,乃因花崗岩礦泥富含鋁矽酸鹽礦物,利用調整不同配比設計之試驗參數,例如,鹼活化液中之鹼當量與鹼模數,礦泥之煅燒製程條件,同時,添加不同爐石量,再比較不同齡期試體之物理性質。研究結果發現,當爐石添加量調整為25%時,灌模六天後脫模,所製成試體28天抗壓強度可高達61.41MPa,而且確保試體不會產生表面開裂問題。至於改質處理方式,由於花崗岩礦泥本身具較低吸水之特性,因此,可製成具出色防水效果之改質花崗岩礦泥粉,但也因此較難拌於水中,其相關試驗結果皆不能在規範範圍,結果皆較其他改質粉差,可再進行未來研究。最後,進行成本分析發現,無論鹼激發或改質處理後,所製成營建材料皆具資源化競爭力,試驗結果證明,鹼激發花崗岩礦泥膠結材抗壓強度高,改質花崗岩礦泥粉則斥水性佳,這兩類新型營建材料應皆提供石材廢棄物更高經濟價值及資源化應用方式。
Stone tailoring industry is one of the most important traditional export industries of Taiwan. Undoubtedly, the disposal and reutilization of stone industry wastes becomes an important and urgent issue. In the study, the primary stone sludge in Taiwan, namely granite sludge, is employed as a raw material in the production of novel construction materials. That is, the granite sludge powders can be alkali-activated or organo-modified to produce a construction material. Consequently, circular economy can be achieved due to the reuse and utilization of granite sludge.
The physical properties of alkali-activated granite sludge specimens with different proportions at various ages were compared. The experimental results show that the 28-day compressive strength of alkali-activated granite sludge specimens can reach up to 61.41MPa and the occurrence of surface cracking can be suppressed if the dosage of slag is 25% and they are demolded after six days of curing. Because of the low water absorption of granite, the resulting organo-modified granite sludge powders provide excellent waterproofing performance. The relevant test results on organo-modified granite sludge powders, however, exceed the standard range and are even worse as compared to other organo-modified powders due to the difficulty in mixing them with water. Finally, it is empirically found that alkali-activated granite sludge possesses high compressive strength and organo-modified granite sludge provides good water repellency. Hence, these novel construction materials made from stone industry waste are competitive and promising when both circular economy and cost are of concern.
[1] 行政院環境保護署,「106 年事業廢棄物申報量統計報告」,行政院環境保護署,2018.
[2] 經濟部工業局.,「工業廢棄物清理與資源化資訊網」: https://riw.tgpf.org.tw/.
[3] 財團法人台灣綠色生產力基金會,「工業廢棄物資源化發展年鑑」,經濟部工業局,2006.
[4] 張添晉,「廢棄物清理與資源化之發展沿革」,工業污染防治,2006.
[5] 行政院環境保護署廢棄物管理處,「推動循環經濟–廢棄物資源化」,2018
[6] 行政院環境保護署,「環保署廢棄物清理法」: https://oaout.epa.gov.tw/law/LawContent.aspx?id=FL015604
[7] 財團法人台灣綠色生產力基金會,「經濟部工業局106年度專案計畫期末執行成果報告:資源再生產業推動及審查管理計畫」,經濟部工業局,第20-26頁,2017.
[8] 鍾美華、呂穎彬、蔡振球,「我國資源化產業之前景與發展」,經濟部ITIS專案辦公室,2007.
[9] Harvey Blatt, and J. T. Tracy, “Petrology: Igneous, Sedimentary and Metamorphic” , 2nd Edition, W. H. Freeman and Company, New York, pp. 66, 1997.
[10] 經濟部工業局,財團法人台灣綠色生產力基金會,「石材加工業資源化應用技術手冊」,經濟部工業局,第12-18頁,2005.
[11] R. Feret, “Slags for the manufacture of cement” , Rev. Mater. Constr. Tr. Publications, pp. 1-145, 1939.
[12] A. O. Purdon, “The action of alkalis on blast-furnace slag” , Journal of the Society of Chemical Industry, vol. 59, no. 9, pp. 191-202, 1940.
[13] V. D. Glukhovsky, “Soil silicate-based products and structures” , Gosstroiizdat Publish, 1957.
[14] 陳志賢,「含矽質廢棄物之無機聚合物」,博士論文,成功大學土木工程學系,2009.
[15] J. Davidovits, “Mineral polymers and methods of making them” , United States Patents 4,349,386, 1982.
[16] A. Palomo, M. W. Grutzeck, and M. T. Blanco, “Alkali-activated fly ashes: a cement for the future”, Cement and Concrete Research, vol. 29, no. 8, pp. 1323-1329, 1999.
[17] H. Xu, and J. S. J. Van Deventer, “The geopolymerisation of alumino-silicate minerals,” International Journal of Mineral Processing, vol. 59, no. 3, pp. 247-266, 2000.
[18] 呂軒志、王泰典、鄭大偉、翁祖炘,「以實驗設計法探討無機聚合物力學特性之影響因素」,臺灣鑛業,vol. 64,no. 2,2012
[19] J. W. Phair, and J. S. J. Van Deventer, “Effect of silicate activator pH on the leaching and material characteristics of waste-based inorganic polymers” , Minerals Engineering, vol. 14, no. 3, pp. 289-304, 2001.
[20] P. Duxson, J. L. Provis, G. C. Lukey, S. W. Mallicoat, W. M. Kriven, and J. S. J. Van Deventer, “Understanding the relationship between geopolymer composition, microstructure and mechanical properties” , Colloids and Surfaces A: Physicochemical and Engineering Aspects, vol. 269, no. 1-3, pp. 47-58, 2005.
[21] A. Fernández-Jiménez, and A. Palomo, “Composition and microstructure of alkali activated fly ash binder: Effect of the activator” , Cement and concrete research, vol. 35, no. 10, pp. 1984-1992, 2005.
[22] S.-D. Wang, X.-C. Pu, K. Scrivener, and P. L. Pratt, “Alkali-activated slag cement and concrete: a review of properties and problems” , Advances in Cement Research, vol. 7, no. 27, pp. 93-102, 1995.
[23] 李明霖,「無機聚合物吸附重金屬之研究」,碩士論文,國立臺北科技大學材料及資源工程系,臺北,2007.
[24] A. Fernández-Jiménez, J. Palomo, and F. Puertas, “Alkali-activated slag mortars: mechanical strength behaviour” , Cement and Concrete Research, vol. 29, no. 8, pp. 1313-1321, 1999.
[25] 戴詩潔,「高嶺石鋁矽酸鹽聚合材料之研究」,碩士論文,臺北科技大學材料及資源工程系,2005.
[26] 王宏駿,「石材加工業廢棄物應用於無機聚合物之研究」,碩士論文,成功大學土木工程學系,2014
[27] 袁愛群、黃平,「聚合磷酸鋁水玻璃固化劑及應用」四川化工與腐蝕控制,1999.
[28] 徐彬,「固態鹼組分鹼礦渣水泥的研製及其水化機理和性能的研究」,博士論文,清華大學土木工程學系 1996
[29] 張西玲、姚愛玲,「礦渣的活性激發技術及機理的研究進展」,萍鄉高等專科學校學報, no. 3, pp. 12-16,2007
[30] 楊南如,「鹼膠凝材料形成的物理化學基礎 (Ⅰ)」,矽酸鹽學報, vol. 24, no. 2,1996.
[31] 禹尚仁、王悟敏,「無熟料矽酸鈉礦渣水泥的水化機理」矽酸鹽學報, vol. 18, no. 2,1990.
[32] 郭文毅,「有機改質層狀矽酸鹽對水泥砂漿微結構與材質之影響」,博士論文,成功大學土木工程學系,2007.
[33] J. Davidovits, “Geopolymers: Inorganic Polymeric New Materials” , Journal of Thermal Analysis and Calorimetry, vol. 37, no. 8, pp. 1633-1656, 1991.
[34] J. Davidovits, and J. L. Sawyer, "Early high-strength mineral polymer," United States Patents 4,509,985, 1985.
[35] C. K. Yip, G. C. Lukey, and J. S. J. Van Deventer, “The coexistence of geopolymeric gel and calcium silicate hydrate at the early stage of alkaline activation” , Cement and Concrete Research, vol. 35, no. 9, pp. 1688-1697, 2005.
[36] J. G. S. Van Jaarsveld ,and J. S. J. Van Deventer , “Effect of the alkali metal activator on the properties of fly ash-based geopolymers.” , Industrial & engineering chemistry research, vol. 38,no. 10, pp. 3932-3941.,1999.
[37] F. G. Helfferich, “Ion exchange” , Dover Publications, INC., New York, 1995.
[38] 於幼華、國立編譯館,「環境科學大辭典」,文景書局有限公司,2002.
[39] 行政院環境保護署,「事業廢棄物申報及管理資訊系統」:https://waste.epa.gov.tw/prog/IndexFrame.asp?Func=5.
[40] 經濟部工業局,「本局政府開放資料(Open Data)」:
https://www.moeaidb.gov.tw/ctlr?PRO=OpenDataList
[41] Grim, “Applied clay mineralogy” , McGrow-Hill, New York, 1962.
[42] 陳政賢、吳全曜、詹益恭,「水泥與非卜特蘭水泥微粒料之細度-比表面積的量測與原理探討」,經濟部標準檢驗局花蓮分局
[43] F. Slaty, H. Khoury, H. Rahier, and J. Wastiels, “Durability of alkali activated cement produced from kaolinitic clay” , Applied Clay Science, vol. 104, pp. 229-237, 2015.
校內:立即公開