簡易檢索 / 詳目顯示

研究生: 解志強
Hsieh, Jhih-Ciang
論文名稱: 矽奈米粒子複合薄膜光電特性研究
The study of optoelectronic properties of Si nanocomposite films
指導教授: 洪昭南
Hong, Chau-Nan Franklin
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2004
畢業學年度: 92
語文別: 中文
論文頁數: 92
中文關鍵詞: 光電電致激發奈米
外文關鍵詞: electroluminescence, nanoparticles, optoelectronic, silicon
相關次數: 點閱:55下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  •   本研究以感應耦合電漿輔助電子槍蒸鍍法製備矽奈米粒子複合薄膜,研究薄膜的結構與特性,並將薄膜製備成元件研究其光電性質。從分析式電子顯微鏡的分析結果顯示,藉由調控氣相中氮氣與氫氣的組成,製備出由非晶質之氮化矽基質包覆矽奈米粒子複合薄膜,矽奈米粒子之粒徑分佈介於3~10 nm。在螢光光譜的分析中,其主要的激發光位於3.0 eV,發光強度隨著氣相中氮氣組成的增加有先增高後降低的趨勢。
      在元件的光電特性研究上,元件所激發的光經由肉眼觀察為藍光,藉由電致激發光譜分析,可知元件所發的光由2.6 eV與2.8 eV兩個發光峰所構成。且電致激發光強度與啟動電壓值隨氣相中氮氣含量之增加而有所改變,顯示氣相中氮氣的含量對薄膜光電特性有強烈的影響。最後,探討以低功函數材料為陰極材料對元件的影響。結果顯示,使用Ca/Ag電極或Ca/Au電極取代Al電極可使輝度值提升一倍。

      The composite films that contain silicon nanoparticles were deposited by the inductively coupled plasma assisted electron-gun evaporation system. The structures and optoelectronic properties of thin film were investigated. Based on the analytical electron microscopy(AEM) analysis, the nanoparticles were embedded in amorphous silicon nitride matrix. The size of nanoparticles were in the range from 3 nm to 10, nm and could be controlled by the concentration of nitrogen in the gas phase during film deposition. Photoluminescence spectroscopy measurements showed that the emission peak was located at 3.0 eV and the emission intensity changed with the concentration of the nitrogen in the gas phase during deposition.
      Electroluminescence measurements showed that the device emitted blue light that was observable by naked eyes in the dark when the device was turned on. The analysis by spectrometer further showed that there were two emission peaks centered at 2.8 eV and 2.6 eV, respectively. The intensity of EL and the turn-on voltage varied with the concentration of nitrogen during deposition, indicating that the gas compositions during deposition strongly affected the optoelectronic properties of thin films. Finally, various low work function materials were employed as the cathodes in fabricating the devices. The results showed that the brightness was increased when the Al electrode was replaced by the Ca/Ag or Ca/Au electrodes.

    摘要 I Abstract II 致謝 III 目錄 V 表目錄 IX 圖目錄 X 第一章. 緒論 1 1-1. 研究動機 1 1-2. 發展現況 8 第二章. 理論基礎 12 2-1. 矽之結構與特性 12 2-2. 量子效應 18 2-2-1. 量子限域與介電效應 18 2-2-2. 人造原子 22 2-3. 奈米粒子複合薄膜 25 2-4. 發光機制─電子─電洞注入模型 28 第三章. 實驗參數與研究方法 31 3-1. 實驗流程圖 31 3-2. 系統設備 32 3-2-1. 反應器 32 3-2-1-1. 感應耦合式電漿輔助電子槍蒸鍍系統 32 3-2-1-2. 基板偏壓電源供應器 33 3-2-1-3. 多功能性基板基座系統 34 3-2-1-4. 溫度感測系統 34 3-2-2. 真空系統 35 3-2-2-1. 抽氣系統 35 3-2-2-2. 壓力檢測系統 35 3-2-3. 反應氣體輸送裝置 36 3-3. 實驗材料 38 3-3-1. 實驗氣體 38 3-3-2. 基板材料 38 3-3-3. 電子槍靶材 39 3-4. 實驗操作步驟 40 3-4-1. 基板前處理 40 3-4-1-1. Si與石英玻璃基板前處理 40 3-4-1-2. 銦錫氧化透明導電玻璃基板 41 3-4-2. 實驗操作步驟 41 3-4-2-1. 矽奈米粒子薄膜沈積 41 3-4-2-2. 矽奈米粒子薄膜元件製造 43 3-5. 分析與鑑定 44 3-5-1. 表面型態分析 44 3-5-2. 結構分析 44 3-5-3. 薄膜組成與鍵結型態分析 45 3-5-4. 光譜分析 45 3-5-4-1. UV/VIS 45 3-5-4-2. 螢光光譜儀 46 3-5-5. 電性量測與電致激發發光源分析 46 第四章. 矽奈米粒子成長與特性研究 47 4-1. 奈米粒子薄膜製造 47 4-1-1. 不同N2/Ar氣體組成比例之影響 47 4-1-2. 基板溫度的影響 54 4-1-3. N2/H2比例的影響 59 4-1-3-1. 結構分析 59 4-1-3-2. X-ray光電子光譜分析 64 4-1-3-3. 螢光光譜分析 67 4-2. 奈米粒子光電薄膜元件特性 71 4-2-1. 不同N2/H2氣相比例的元件特性分析 71 4-2-1-1. 電致激發光譜分析(Electroluminescence, EL) 71 4-2-1-2. 元件電性分析 76 4-2-2. 不同陰極材料對元件的影響 85 第五章. 結論 89 第六章. 參考文獻 91

    1. J. D. Plummer, M. D. Deal, and P. B. Griffin, 2000 Silicon VLSI Technology(Upper Saddle River, NJ: Prentice-Hall).
    2. J. T. Clemens, Bell Lab. Tech. J., Autumn, 76(1997).
    3. International Technology Roadmap for Semiconductors, 2000 Update, Interconnect (http://public.itrs.net)
    4. L. Risch, Mater. Sci. Eng., C19, 363(2002) .
    5. T. N. Theis, IBM J. Res. Dev., 44, 379(2000).
    6. D. A. Miller, Proc. IEEE, 88, 728(2000).
    7. http://www.intel.com/research/silicon/index.htm
    8. G. Masini, L. Colace, and G. Assanto, Mater. Sci. Eng., B89, 2(2002).
    9. 羅於陵、鄭凱安,奈米技術投資與市場發展趨勢,經濟部工業局,4(2002)。
    10. http://www.intel.com/research/silicon/mooreslaw.htm
    11. L. Pavesi, J. Phys.: Condens. Matter, 15, R1169(2003).
    12. http://www.intel.com/research/silicon/CMIC_2002_Jose_Maiz.htm
    13. S. Ton, X. N. Liu, and T. Gao, J. Non-crystal Solids, 227-230, 498(1998).
    14. A. J. Kenyon, P. F. Trwoga, and C. W. Pitt, J. Appl. Phys., 79, 9291(1996).
    15. T. Inokuma, Y. Wakayama, and T. Muramoto, J. Appl. Phys., 83, 2228(1998).
    16. T. S. Iwayama, K. fujita, and S. Nakao, Appl. Phys. Lett., 69, 2033(1996).
    17. K. S. Min, K. V. Shcheglov, and C. M. Yang, Appl. Phys. Lett., 69, 2033(1996)
    18. X. W. Zhao, H. Isshiki, and Y. Aoyagi, Mater. Sci. Eng., B74, 197(2000).
    19. T. Yosshida, S. Takeyama, and Y. Yamada, Appl. Phys. Lett., 68,1772(1996).
    20. J. Lee, M. F. Becker, and J. W. Keto, J. Appl. Phys., 89, 8146(2001).
    21. K. Nakagawa, M. Fukuda, and S. Miyuzaki, Mat. Res. Soc. Symp. Proc., 452, 243(1997).
    22. S. Miyazaki, Y. Hamamoto, and E. Yoshida, Thin Solid Film, 369, 55(2000).
    23. T. Yasuda, M. Nishizawa, and S. Yamasaki, J. Vac. Sci. Technol., B18, 1752(2000).
    24. K. Takeoka, K. Toshikiyo, and M. Fujii, J. Lumine., 87-89, 350(2000).
    25. S. Toshikiyo, M. Tokunaga, and S. Takeoka, J. Appl. Phys., 89, 4917(2001).
    26. Louis Brus, J. Phs. Chem., 90, 2555(1986).
    27. E. Kaxiras, Phys. Rev. Lett., 64,551(1990).
    28. C. H. Pattersson and R. P. Messmer, Phys. Rev. B, 42, 7530(1990).
    29. D. A. Jelski and B. L. Swift, J. Chem. Phys., 95, 8552(1991).
    30. Ursula Röthlusberger, Wanda Andreoni, and Michele Parrinello., Phys. Rev. Lett., 72,665(1994).
    31. Lei Liu, C. S. Jayanthi, and Shi-Yu Wu, J. Appl. Phys., 90, 4143(2001).
    32. R. O. Jones, B. W. Clare, and P. J. Jennings, Phys. Rev. B, 64, 125203(2001).
    33. J. S. Blakemore, Solid State Physics, Cambridge University Press, Cambridge, 1988.
    34. A. Bahel and M. V. Ramakrishna, Phys. Rev. B, 51, 13849(1995).
    35. S. V. Gaponenko, Optical Properties of Semiconductor Nanocrystals, Cambridge University Press, Cambridge, 1998.
    36. Y. Arakawa and H. Sakaki, Appl. Phys. Lett., 40,939(1982).
    37. H. Wong, Microelectron. Reliab., 42, 317(2002).
    38. J. Robertson and M. J. Powell, Appl. Phys. Lett., 44, 415(1984).
    39. P. Yingcai, Z. Xinwei, and F. Guangsheng, Chinese Scinese Bulletin, 47, 1233(2002).
    40. a) K. Murayama, T. Toyama, S. Miyazaki, and M. Hirose, J. Non-Cryst. Solids, 198-200, 792(1996). b) M. Molinari, H. Rinnert, and M. Vergnat, Appl. Phys. Lett., 77, 3499(2000). c) M. Molinari, H. Rinnert, and M. Vergnat, Appl. Phys. Lett., 79, 2172(2001).
    41. N. M. Park, T. S. Kim, and S. J. Park, Appl. Phys. Lett., 78, 2575(2001).
    42. Hei Wong, Microelectron. Reliab., 42, 317(2002)
    43. W. Skorupa, L. Rebohle, T. Gebel, Appl. Phys. A., 76, 1049(2003).
    44. Zingway Pei, Y. R. Chang, and H. L. Hwang, Appl. Phys. Lett.,80, 2839(2002).

    下載圖示 校內:2006-08-24公開
    校外:2006-08-24公開
    QR CODE