| 研究生: |
解志強 Hsieh, Jhih-Ciang |
|---|---|
| 論文名稱: |
矽奈米粒子複合薄膜光電特性研究 The study of optoelectronic properties of Si nanocomposite films |
| 指導教授: |
洪昭南
Hong, Chau-Nan Franklin |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
| 論文出版年: | 2004 |
| 畢業學年度: | 92 |
| 語文別: | 中文 |
| 論文頁數: | 92 |
| 中文關鍵詞: | 矽 、光電 、電致激發 、奈米 |
| 外文關鍵詞: | electroluminescence, nanoparticles, optoelectronic, silicon |
| 相關次數: | 點閱:55 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究以感應耦合電漿輔助電子槍蒸鍍法製備矽奈米粒子複合薄膜,研究薄膜的結構與特性,並將薄膜製備成元件研究其光電性質。從分析式電子顯微鏡的分析結果顯示,藉由調控氣相中氮氣與氫氣的組成,製備出由非晶質之氮化矽基質包覆矽奈米粒子複合薄膜,矽奈米粒子之粒徑分佈介於3~10 nm。在螢光光譜的分析中,其主要的激發光位於3.0 eV,發光強度隨著氣相中氮氣組成的增加有先增高後降低的趨勢。
在元件的光電特性研究上,元件所激發的光經由肉眼觀察為藍光,藉由電致激發光譜分析,可知元件所發的光由2.6 eV與2.8 eV兩個發光峰所構成。且電致激發光強度與啟動電壓值隨氣相中氮氣含量之增加而有所改變,顯示氣相中氮氣的含量對薄膜光電特性有強烈的影響。最後,探討以低功函數材料為陰極材料對元件的影響。結果顯示,使用Ca/Ag電極或Ca/Au電極取代Al電極可使輝度值提升一倍。
The composite films that contain silicon nanoparticles were deposited by the inductively coupled plasma assisted electron-gun evaporation system. The structures and optoelectronic properties of thin film were investigated. Based on the analytical electron microscopy(AEM) analysis, the nanoparticles were embedded in amorphous silicon nitride matrix. The size of nanoparticles were in the range from 3 nm to 10, nm and could be controlled by the concentration of nitrogen in the gas phase during film deposition. Photoluminescence spectroscopy measurements showed that the emission peak was located at 3.0 eV and the emission intensity changed with the concentration of the nitrogen in the gas phase during deposition.
Electroluminescence measurements showed that the device emitted blue light that was observable by naked eyes in the dark when the device was turned on. The analysis by spectrometer further showed that there were two emission peaks centered at 2.8 eV and 2.6 eV, respectively. The intensity of EL and the turn-on voltage varied with the concentration of nitrogen during deposition, indicating that the gas compositions during deposition strongly affected the optoelectronic properties of thin films. Finally, various low work function materials were employed as the cathodes in fabricating the devices. The results showed that the brightness was increased when the Al electrode was replaced by the Ca/Ag or Ca/Au electrodes.
1. J. D. Plummer, M. D. Deal, and P. B. Griffin, 2000 Silicon VLSI Technology(Upper Saddle River, NJ: Prentice-Hall).
2. J. T. Clemens, Bell Lab. Tech. J., Autumn, 76(1997).
3. International Technology Roadmap for Semiconductors, 2000 Update, Interconnect (http://public.itrs.net)
4. L. Risch, Mater. Sci. Eng., C19, 363(2002) .
5. T. N. Theis, IBM J. Res. Dev., 44, 379(2000).
6. D. A. Miller, Proc. IEEE, 88, 728(2000).
7. http://www.intel.com/research/silicon/index.htm
8. G. Masini, L. Colace, and G. Assanto, Mater. Sci. Eng., B89, 2(2002).
9. 羅於陵、鄭凱安,奈米技術投資與市場發展趨勢,經濟部工業局,4(2002)。
10. http://www.intel.com/research/silicon/mooreslaw.htm
11. L. Pavesi, J. Phys.: Condens. Matter, 15, R1169(2003).
12. http://www.intel.com/research/silicon/CMIC_2002_Jose_Maiz.htm
13. S. Ton, X. N. Liu, and T. Gao, J. Non-crystal Solids, 227-230, 498(1998).
14. A. J. Kenyon, P. F. Trwoga, and C. W. Pitt, J. Appl. Phys., 79, 9291(1996).
15. T. Inokuma, Y. Wakayama, and T. Muramoto, J. Appl. Phys., 83, 2228(1998).
16. T. S. Iwayama, K. fujita, and S. Nakao, Appl. Phys. Lett., 69, 2033(1996).
17. K. S. Min, K. V. Shcheglov, and C. M. Yang, Appl. Phys. Lett., 69, 2033(1996)
18. X. W. Zhao, H. Isshiki, and Y. Aoyagi, Mater. Sci. Eng., B74, 197(2000).
19. T. Yosshida, S. Takeyama, and Y. Yamada, Appl. Phys. Lett., 68,1772(1996).
20. J. Lee, M. F. Becker, and J. W. Keto, J. Appl. Phys., 89, 8146(2001).
21. K. Nakagawa, M. Fukuda, and S. Miyuzaki, Mat. Res. Soc. Symp. Proc., 452, 243(1997).
22. S. Miyazaki, Y. Hamamoto, and E. Yoshida, Thin Solid Film, 369, 55(2000).
23. T. Yasuda, M. Nishizawa, and S. Yamasaki, J. Vac. Sci. Technol., B18, 1752(2000).
24. K. Takeoka, K. Toshikiyo, and M. Fujii, J. Lumine., 87-89, 350(2000).
25. S. Toshikiyo, M. Tokunaga, and S. Takeoka, J. Appl. Phys., 89, 4917(2001).
26. Louis Brus, J. Phs. Chem., 90, 2555(1986).
27. E. Kaxiras, Phys. Rev. Lett., 64,551(1990).
28. C. H. Pattersson and R. P. Messmer, Phys. Rev. B, 42, 7530(1990).
29. D. A. Jelski and B. L. Swift, J. Chem. Phys., 95, 8552(1991).
30. Ursula Röthlusberger, Wanda Andreoni, and Michele Parrinello., Phys. Rev. Lett., 72,665(1994).
31. Lei Liu, C. S. Jayanthi, and Shi-Yu Wu, J. Appl. Phys., 90, 4143(2001).
32. R. O. Jones, B. W. Clare, and P. J. Jennings, Phys. Rev. B, 64, 125203(2001).
33. J. S. Blakemore, Solid State Physics, Cambridge University Press, Cambridge, 1988.
34. A. Bahel and M. V. Ramakrishna, Phys. Rev. B, 51, 13849(1995).
35. S. V. Gaponenko, Optical Properties of Semiconductor Nanocrystals, Cambridge University Press, Cambridge, 1998.
36. Y. Arakawa and H. Sakaki, Appl. Phys. Lett., 40,939(1982).
37. H. Wong, Microelectron. Reliab., 42, 317(2002).
38. J. Robertson and M. J. Powell, Appl. Phys. Lett., 44, 415(1984).
39. P. Yingcai, Z. Xinwei, and F. Guangsheng, Chinese Scinese Bulletin, 47, 1233(2002).
40. a) K. Murayama, T. Toyama, S. Miyazaki, and M. Hirose, J. Non-Cryst. Solids, 198-200, 792(1996). b) M. Molinari, H. Rinnert, and M. Vergnat, Appl. Phys. Lett., 77, 3499(2000). c) M. Molinari, H. Rinnert, and M. Vergnat, Appl. Phys. Lett., 79, 2172(2001).
41. N. M. Park, T. S. Kim, and S. J. Park, Appl. Phys. Lett., 78, 2575(2001).
42. Hei Wong, Microelectron. Reliab., 42, 317(2002)
43. W. Skorupa, L. Rebohle, T. Gebel, Appl. Phys. A., 76, 1049(2003).
44. Zingway Pei, Y. R. Chang, and H. L. Hwang, Appl. Phys. Lett.,80, 2839(2002).