簡易檢索 / 詳目顯示

研究生: 林宏奕
Lin, Hung-I
論文名稱: 破裂岩體優勢水流路徑之研究
Investigation of preferential flow path in fractured rocks
指導教授: 李振誥
LEE, CHENG-HAW
學位類別: 博士
Doctor
系所名稱: 工學院 - 資源工程學系
Department of Resources Engineering
論文出版年: 2009
畢業學年度: 97
語文別: 中文
論文頁數: 123
中文關鍵詞: 優勢水流代表性體積隧道滲流水力內寬破裂岩體
外文關鍵詞: fractured rock mass, preferential flow, representative elementary volume, hydraulic aperture, seepage, REV
相關次數: 點閱:110下載:12
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究目的在探討破裂面網路水力特性,藉由破裂面網路中有效與無效破裂面之差異,了解優勢水流路徑對破裂岩體水力性質之影響,以及建立從破裂面網路中劃分出優勢路徑技術。研究中首先探討七種單一破裂面水力內寬模式評估結果,進行比較及區分其適用性,進而討論破裂岩體水力邊界露頭對水力性質之影響,以及利用隧道壁破裂面露頭預估隧道滲流量,從而發現破裂面網路中有效破裂面之概念,最後進行破裂岩體代表性體積以及優勢水流路徑之研究。
    影響單一破裂面水力內寬最重要參數為破裂面起伏(粗糙度)以及間距(力學內寬)。本研究首先利用六種標準化參數分析破裂面粗糙度JRC(joint roughness coefficient) 標準曲線,發現可有效將粗糙度參數量化並取代。並選取七種水力內寬評估模式進行比較,結果顯示力學內寬與壁面起伏標準差比值可視為區分適用性指標,比值大於8時,適用平行板模式,比值介於3~8時,視破裂面粗糙度特性選擇合適評估模式,當比值小於3時,則以數值模式較能有效評估。
    水力邊界上之破裂面露頭將控制水流出入岩體之通道,成為影響水流通路之重要條件。本研究採用二維隨機離散破裂面程式TUNFLOW,探討破裂岩體露頭與水力傳導係數,及隧道壁露頭與湧水量之關係。結果顯示破裂面網路存在有效及無效破裂面,且破裂面密度、長度為控制露頭數最大因素,與破裂面水力參數之相關性極佳。而有效露頭數在破裂岩體水力參數及隧道湧水估計時,為有效及重要之參考依據。最後以露頭數推估隧道湧水量模式應用於雪山隧道,評估誤差在一個級數內,代表此方法有其可行性。
    破裂面網路中存在無效破裂面,造成連續模式與離散模式對水力參數預估結果差異甚大,本研究利用二維離散破裂面模式探討代表性體積REV(representative elementary volume),並利用透析因子獲得相近之結果,代表利用透析因子同樣可評估代表性體積尺度。最後利用質點追蹤技術,以累積質點出現次數進行優勢水流路徑研究,發現此方法可有效顯示出介質水流路徑特性,以及標示出優勢路徑位置,成為相關問題探討中重要研究方法。

    The hydraulic properties of single fracture and fracture networks were discussed in this research to explain the influence of effective fractures, and how to separate preferential flow path from original fracture networks. First, seven hydraulic aperture modes were applied to confer the applicable addition of fractures. Then the fracture outcrops were used in estimating the hydraulic conductivity and groundwater seepage into tunnel. Finally, the estimation of representative elementary volume, REV, and method of preferential flow path separation were built in this research.
    Joint roughness and mechanical aperture are the major parameters in hydraulic aperture estimation. There were six target modulus based on the elevation of fracture wall used to the standard joint roughness coefficient curve. Result shows roughness average and root-mean-square roughness were useful in roughness evaluation. In addition, seven approaches to evaluate hydraulic aperture in single fracture were compared to interpret the application conditions. Results indicate that the ratio of the mean aperture to its standard deviation of fracture wall is the most significant factor. When this ratio is lager than 8, the parallel plate model is suitable. If the ratio is between 3 and 8, the approach was chosen by the roughness characteristic of fracture wall. In case of the ratio is smaller than 3, numerical simulation is the best approach in hydraulic aperture estimation.
    Parameters of fractures are the basic components of hydraulic models in fractured rocks. However, the outcrops of fractures on the hydraulic boundary are the actual passages of inflow and outflow in fractured rocks and tunnel wall. The computer code, TUNFLOW, which is based on the discrete fracture model is applied to estimate the hydraulic conductivity and outcrops of simulated cases in this research. Results show that the preferential path exists in partial fracture net. Density and trace length of fractures are the major factors to amount of the effective outcrops, which are the outcrops that groundwater passed. There is a fairly relation between seepage and outcrops on the tunnel wall. This result could be used in estimating the groundwater surge with number of outcrops, and result in the case of Syueshan tunnel is very close to the record in-situ.
    The void fractures of fracture network are the principal reason in the difference of hydraulic property between continuum and discrete approaches. The representative elementary volume, REV, was calculated by the computer code, TUNFLOW, in this research. The distribution of percolation factors shows the similar results. Then the particle tracing was applied to separate preferential flow path. The cumulative frequency of each node is equal to the probability of groundwater passed. This approach could help to display the path of preferential flow, so that it would be a useful method in interrelated research.

    目 錄 摘要 I 目錄 V 圖目錄 VII 表目錄 IX 第一章 緒論 1 1.1 研究背景與動機 1 1.2 研究方法 2 第二章 前人研究 4 2.1 破裂岩體水力模型 4 2.1.1 離散破裂面模式 7 2.1.2 連續模式 10 2.1.3 當量網路模式 16 2.1.4 場址研究 17 2.2 破裂岩體優勢水流路徑 23 第三章 單一破裂面水力內寬 27 3.1 破裂面粗糙度 27 3.2 單一破裂面水力內寬 33 3.2.1 水力內寬評估模式 34 3.2.2 變動平行板模式與楔型模式 41 3.2.3 綜合比較 45 第四章 破裂面露頭與水力性質 50 4.1 破裂面露頭與岩體水力傳導係數 50 4.1.1 離散破裂面網路之產生 50 4.1.2 有效露頭比 53 4.1.3 有效出入口露頭與當量水力傳導係數 55 4.1.4 破裂面參數對有效露頭數與透水係數之影響 57 4.1.5 固定有效露頭數下透水係數之變化 60 4.2 隧道露頭與滲流量之關係 62 4.2.1 隧道半徑與露頭數及湧水量關係 62 4.2.2 破裂面參數對隧道有效露頭數與湧水之影響 63 4.2.3 固定露頭下隧道湧水量 67 4.3 案例研究 69 4.3.1 案例概述與參數選取 69 4.3.2 案例分析 75 第五章 破裂岩體優勢水流路徑 76 5.1 有效破裂面網路 76 5.1.1 連續正交破裂面模式 76 5.1.2 連續正交破裂面模式與離散破裂面模式 80 5.2 水力傳導係數代表性體積REV 83 5.3 透析理論 88 5.3.1 透析理論之發展 88 5.3.2 冪次長度分佈 90 5.3.3 透析因子 94 5.4 優勢水流路徑 98 5.4.1 質點追蹤技術 98 5.4.2 優勢水流路徑劃分 100 第六章 結論與建議 103 6.1 結論 103 6.2 建議 105 參考文獻 106 簡歷 120

    1. Abelin. H., Neretnieks, I., Tunbrant, S., and Moreno, L., “Migration in a Single Fracture :Experiment Results and Evaluation.” Final report, Stripa Project, Tech. Rep. 55-03, Swed. Nucl.Ful and Waste Manage. Co.(SKB), Stochholm. (1985)
    2. Ahn, J., Furuhama, Y., Li, Y., and Suzuki, A., “Analysis of Radionuclide Transport Through Fracture Networks by Percolation Theory,” Journal of Nuclear Science, Vol. 28, No. 5, pp.433-491 (1991).
    3. Andersson, J., and Dverstrop, B., “Conditional Simulations of Fluid Flow in Three-Dimensional Network of Discrete Fractures,” Water Resource Research, Vol.23, No 10, pp.1876-1886 (1987).
    4. Andersson, J., and Thunvik, R., “Predicting Mass Transport in Discrete Fracture Networks with the Aid of Geometrical Field Data,” Water Resource Research, Vol.22, No 13, pp.1941-1950 (1986).
    5. Andersson, J., Shapiro, A.M.,and Bear, J., “A Stochastic Model of a Fracture Rock conditioned by Measured Information,” Water Resource Research, Vol.20, No 1, pp.79-88 (1984).
    6. Baecher, G. B., “Statistical Analysis of Rock Mass Fracturing.” Journal of Mathematical Geology, Vol.15, pp. 329-347, (1983).
    7. Balberg, I., and Binenbaum, N., “Computer Study of The Percolation Threshold in A Two-dimensional Anisotropic System of Conducting Sticks,” Physical Review B, Vol. 28, No. 7, pp. 3799-3812 (1983).
    8. Balberg, I., Berkowitz, B., and Drachsler, G., “Application of a percolation model to flow in fractured hard rocks.” Journal of Geophysics Research, Vol. 96, No. B6, pp.10015-10021 (1991).
    9. Bandis, S. C., Lumsden, A. C., and Barton N. R., “Fundamentals of Rock Joint Deformation,” International Journal of Rock Mechanics and Mining Sciences and Geomechanics Abstracts, Vol.20, No.6, pp.249-268 (1983).
    10. Barenblatt, G.E., Zheltov, I.P., and Kochina, I.N., “Basic Concepts in the Theory of Homogeneous Liquids in Fissured Rocks,” Journal of Appl Math Mech, Vol.24, No.5, pp.1286-1303 (1960).
    11. Barton, N. R., Lumsden A. C., and Bandis, S. C., “Fundamentals of Rock Joint Deformation,” International Journal of Rock Mechanics and Mining Sciences and Geomechanics Abstracts, Vol. 20, pp.121-140 (1983).
    12. Barton, N., and Choubey, V., “The Shear Strength of Bock Joints in Theory and in Practice,“Rock Mechanics, Vol.10, pp.1-54 (1977).
    13. Bear, J., “Dynamics of Fluids in Porous Media.” Elsevier, New York, (1972).
    14. Berkowitz, B., “Analysis of fracture network connectivity using percolation theory.” Mathematical Geology, Vol. 27, No. 4, pp.467-483 (1995).
    15. Berkowitz, B., “Characterizing flow and transport in fractured geological media: A review,” Advances in Water Resources, Vol. 25, pp.861–884 (2002).
    16. Berkowitz, B., and Balberg, I., “Percolation theory and its application to groundwater hydrology.” Water Resource Research, Vol. 29, No. 4, pp.775-95 (1993).
    17. Berkowitz, B., and Breaster, C., “Dispersion in Sub-representative Elementary Volume Fracture Networks: Percolation Theory and Random Walk Approach,” Water Resource Research, Vol.27, No 2, pp.3159-3167 (1991).
    18. Bernabe Y, Bruderer-Weng C, Maineult A, “Permeability fluctuations in heterogeneous networks with different dimensionality and topology, “Journal of Geophysical Research-Solid Earth, Vol. 108, No. B7, Art. No. 2351 (2003).
    19. Bibby, R., “Mass Transport of Solutes in Dual-porosity Media,” Water Resource Research, Vol.17, pp.1071-1075(1981).
    20. Bour, O., and Davy, P., “Connectivity of Random Falt Networks Following A Power Law Fault Distribution,” Water Resource Research, Vol.33, pp.1567-1583 (1997).
    21. Bour, O., and Davy, P., “On The Connectivity of Three-dimensional Fault Networks,” Water Resource Research, Vol.34, No. 10, pp.2611-2622 (1998)
    22. Broadbent, S. R. amd Hammersley, J. M., “Percolation processes. I. Crystals and Mazes.” Proceedings of the Cambridge Philosophical Society, vol. 53, no. 3, pp. 629-641 (1957).
    23. Brown, S. R., “A Note on the Description of Surface Roughness Using Fractal Dimension, ” Geophysical Research Letters, Vol. 14, No. 11, pp. 1095-1098 (1987).
    24. Cacas, M.C., Ledoux, E., de Maesily, G., Tillie, B., Barbreau, A., Durand , E., Feuga, B., and Peaudecerf, P., “Modeling Fracture Flow with a Stochastic Discrete Fracture Network: Calibration and Validation 1,” Water Resource Research, Vol.26, No 3, pp.479-489 (1990a).
    25. Cacas, M.C., Ledoux, E., de Maesily, G., Tillie, B., Barbreau, A., Calmels, P., Gaillard, B., and Margritta, R., “Modeling Fracture Flow with a Stochastic Discrete Fracture Network: Calibration and Validation 2,” Water Resource Research, Vol.26, No 3, pp.491-450 (1990b).
    26. Caldwell, J. A., “in Proceeding of Symposium on Percolation Through Fissured Rocks,” International Society for Rock Mechanics and International Association of Engineering Geology, Stuttgart, Germany, pp.115 (1972).
    27. Call, R. D., Savely, J. P., and Nicholas, D. E., “Estimation of Joint Set Characteristics from Surface Mapping Data,” 17th U.S. Symp. On Rock Mechanics, 2B2-1-2B2- (1976).
    28. Carslaw, H. S., and Jaeger J. C., Conduction of Heat in Solids, 2nd ed., Oxford University Press, New York (1954).
    29. Chen, R.H., Lee, C.H., and Chen G.S., “Evaluation of Transport of Radioactive Contaminant in Fractured Rock.” Environmental Geology, Vol.41, pp.440-450 (2001).
    30. Chiles, J. P., “Fractal and Geostatistical Methods for Modeling of A Fracture Nerwork,” Mathematical Geology, Vol. 20, No 6, pp.631-654 (1988).
    31. Cruden, D. M., “Describing The Size of Discontinuities,”,” International Journal of Rock Mechanics and Mining Sciences and Geomechanics Abstracts, Vol.14, pp.133-137 (1977).
    32. Dahan, O., Nativ, R., Adar, E. M., Berkowitz, B., and Weisbrod, N., “On fracture structure and preferential flow in unsaturated chalk,” Ground Water, Vol. 38, No. 3, pp.444–51 (2000).
    33. Delay, F., Kaczmaryk, A., and Ackerer, P., “Inversion of interference hydraulic pumping tests in both homogeneous and fractal dual media “Advances in Water Resources, Vol. 30, pp. 314–334 (2007).
    34. Dershowitz, W. S., and Einstein H. H., “Characterizing Rock Joint Geometry With Joint System Models.” Rock Mech., and Rock Eng., Vol. 21, pp. 21-51 (1988).
    35. Dershowitz, W., and Doe, T., “Analysis of Heterogeneously Connected Rock Masses by Forward Modeling of Fractional Dimension Flow Behavior,“ International Journal of Rock Mechanics and Mining Science, Vol. 34, (1997).
    36. Dershowitz, W., S., and Fidelibus, C., “Derivation of Equivalent Pipe Network Analogues for Three-Dimensional Discrete Fracture Networks by The Boundary Element Method,” Water Resource Research, Vol.35, No 9, pp.2685-2691 (1999).
    37. Dershowitz, W., S., and Miller, I., “Dual Porosity Fracture Flow and Transport,” Geophys Res Lett , Vol.22, pp.1441-1444 (1995).
    38. Dreuzy, J. R., Davy, P., and Bour, O., “Hydraulic Properties of Two Dimensional Random Fracture Networks Following A Power Law Distribution 1.Effective Connectivity,” Water Resource Research, Vol.37, No 8, pp.2065-2078 (2001).
    39. Dverstorp, B., and Andersson, J., “Application of the discrete fracture network concept with field data:possibilities of model calibration and validation,” Water Resource Research, Vol.25, No 3, pp.540-550 (1989).
    40. Englman, R. Y., Gur, Y., and Jaeger, Z., “Fluid Flow Through A Crack Network in Rocks, “ Journal of Applied Mechanic, Vol. 50, pp. 707-711 (1983).
    41. Englman, R., Gur, Y., and Jaeger, Z., “Fluid flow through a crack network in rocks.” Journal of Applied Mechanics, Vol. 50, pp.707-711 (1983).
    42. Ewing, R. P., and Gupta, S. C., “Modeling Percolation Properties of Random Media Using A Domain Network,” Water Resource Research, Vol.29, No 9, pp.3169-3178 (1993).
    43. Fransson, A., “A case study to verify methods for estimating transmissivity distributions along boreholes.“ Hydrogeology Journal, Vol. 15, pp. 307–313 (2007).
    44. Golden, J. M., “Percolation Theory And Models of Unsaturated Porous Media,” Water Resource Research, Vol.16, No 1, pp.201-209 (1980).
    45. Gómez-Hernández, J. J., Hemdricks H. J., and Cassiraga E. F., “Stochastic Analysis of Flow Response in A Three Dimensional Fractured Rock Mass Block,“ International Journal of Rock Mechanics and Mining Science, Vol. 38, pp.32-44 (2001).
    46. Groves, C.G., and Howard, A. D., “Early development of karst systems, 1. Preferential flow path enlargement under laminar flow,” Water Resource Research, Vol. 30, No. 10, pp. 2837–2846 (1994).
    47. Guimerà, J., Duro, L., Jordana, S., and Bruno, J., “Effects of ice melting and redox front migration in fractured rocks of low permeability.” Swedish Nuclear Fuel and Waste Management Co (1999).
    48. Hadermann, J., and Heer, W. “The Grimsel (Switzerland) Migration Experiment: Integrating Field Experiments, Laboratory Investigations And Modelling,” Journal of Contaminant Hydrology, Vol. 21, pp. 87-100(1996).
    49. Halihan T, Love A, Sharp JM “Identifying connections in a fractured rock aquifer using ADFTs.” Ground Water, Vol. 43, No. 3, pp.327-335 (2005).
    50. Hart, R., D., “An Introduction to Distinct Element Modeling for Rock Engineering.” Proceedings of the 7th Congress on Rock Mechanics, ISRM, Aachen, Vol. 3, (1991).
    51. Hestir, K., and Long, J. C. S., “Analytical expressions for the permeability of random two-dimensional Poisson fracture networks based on regular lattice percolation and equivalent media theories.” Journal of Geophysical Research, Vol. 95, No. B13, pp.21565-21581 (1990).
    52. Huyakorn, P., S., Lester B., H., and Faust, C., R., “Finite Element Techniques for Modeling Groundwater Flow in Fractured Aquifers,” Water Resource. Research, Vol.19, No.4, pp.1019-1035 (1983).
    53. Iwai, K., “Fundamental Studies of Fluid Flow Through a single fracture,” Ph.D. Dissertation, University of California, Berkeley (1976).
    54. Jing, L., Tsang, C.-F., and Stephansson, O., “DECOVALEX-An International Co-Operative Research Project on Mathematical Models of Coupled THM Processes for Safety Analysis of Radioactive Waste Repositories,” International Journal of Rock Mechanics and Mining Sciences and Geomechanics Abstracts, Vol. 32, No. 5, pp. 389-398 (1995).
    55. Kazi, A., and Sen, Z., “Volumetric RQD:An Index of Rock Quality ,” Proc Int Symp on Fundam of Rock Joints, Björkliden, Sweden, pp.95-102(1985)
    56. Khaleel, R., “Scale Dependence of Continuum Models for Fractured Basalts,” Water Resource. Research, Vol.25, No.8, pp.1241-1252 (1984).
    57. Kobayashi, A., Fujita, T., and Chijimatsu, M., “Continuous Approach for Coupled Mechanical And Hydraulic Behavior of A Fractured Rock Mass During Hypothetical Shaft Sinking at Sellafield, UK,” International Journal of Rock Mechanics and Mining Sciences, Vol.38, No. 1, pp45-57 (2001).
    58. Larozque, M., Banton, O., Ackerer, P., and Razack, M., “Determining Karst transmissivities with inverse modeling and an equivalent porous media,” Ground Water, Vol. 37, Issue 6, pp. 897-903 (1999).
    59. Le Borgne, T. L., Bour, O., Riley, M. S., Gouze, P., Pezard, P. A., Belghoul, A., Lods, G., Le Provost, R., Greswell, R. B., Ellis, P. A., Isakov, E., and Last, B. J., “Comparison of alternative methodologies for identifying and characterizing preferential flow paths in heterogeneous aquifers.” Journal of Hydrology, Vol. 345, pp.134-148 (2007).
    60. Le Borgne, T., Bour O., Paillet F. L., Caudal J.-P., “Assessment of preferential flow path connectivity and hydraulic properties at single-borehole and cross-borehole scales in a fractured aquifer “Journal of Hydrology, Vol. 328, pp. 347– 359 (2006).
    61. Le Borgne, T., Bour O., Riley, M.S., Gouze P., Pezard P.A., Belghoul A., Lods G., Le Provost R., Greswell R.B., Ellis P.A.,Isakov E., Last B.J., “Comparison of alternative methodologies for identifying and characterizing preferential flow paths in heterogeneous aquifers “Journal of Hydrology, Vol. 345, pp.134–148 (2007).
    62. Le Borgne, T., Bour, O., Paillet, F. L., and Caudal, J. P., “Assessment of preferential flow path connectivity and hydraulic properties at single-borehole and cross-borehole scales in a fractured aquifer.” Journal of Hydrology, Vol. 28, pp.347-359 (2006).
    63. Lee, C.H., Deng, B.W., and Chang, J.L., “A Continuum Approach for Estimating Permeability in Naturally Fractured Rocks,” Engineering Geology, Vol.39, pp.71-85(1995).
    64. Lin, B. S., and Lee, C.H. “Percolation and Dispersion of Mass Transport in Saturated Fracture Network,” Water Resource Management, Vol. 12, pp. 409-432. (1998).
    65. Lin, B. S., Lee, C.H., and Hwang, H.H., “Analysis of Mass Transport Through Fractured Networks using Percolation Theory Approach,” Journal of The Chinese Institute of Environment Engineers, Vol. 7, No. 1, pp. 1-11. (1997).
    66. Lin, B. S., Lee, C.H., and Yu, J.L., “Analysis of Groundwater Seepage of Tunnels in Fracture Rock,” Journal of The Chinese Institute of Environment Engineers, Vol. 23, No. 3, pp. 155-160. (2000).
    67. Lin, H. I, and Lee, C. H., “An Approach to Assessing the Hydraulic Conductivity Disturbance in Fractured Rocks around the Syueshan Tunnel, Taiwan”, Tunneling and underground space technology, Vol. 24, No. 2, pp. 222-230 (2009).
    68. Liu, Enru., “Effects of Fracture Aperture and Roughness on Hydraulic and Mechanical Properties of Rocks:Implication of Seismic Characterization of Fractured Reservoirs,” Journal of Geophysics and Engineering, Vol. 2, pp. 38-47 (2005).
    69. Long, J.C.S., Remer, C.R., and Witherspoon, P.A., “The Relationship of the Degree of Interconnection to Permeability of Fracture Networks,” Water Resource Research, Vol.90 (B4), pp.3087-3098 (1985).
    70. Long, J.C.S., Remer, C.R., Wilsion, C.R., and Witherspoon, P.A., “Porous Media Equivalents for Networks of Discontinuous Fractures,” Water Resource Research, Vol.18, No 3, pp.645-648 (1982).
    71. Martinez-Landa L, Carrera J., An analysis of hydraulic conductivity scale effects in granite (Full-scale Engineered Barrier Experiment (FEBEX), Grimsel, Switzerland), Water Resour. Res., 41(3), (2005).
    72. Maryška, J., Severýn, O., and Vohralík, M., “Numerical simulation of fracture flow with a mixed-hybrid FEM stochastic discrete fracture network model,” Computational Geosciences, Vol. 8, pp.217–234 (2004).
    73. McLaren, R. G., Forsyth, P. A., Sudicky, E. A., VanderKwaak, J. E., Schwartz, F. W., and Kessler, J. H., “Flow and transport in fractured tuff at Yucca Mountain: numerical experiments on fast preferential flow mechanisms,” Journal of Contaminant Hydrology, Vol. 43, pp.211–38 (2000).
    74. Meir, N. V., Jaeggi, D., Herfort, M., & Loew, S., Pezard, P. A., and & Lods, G., “Characterizing flow zones in a fractured and karstified limestone aquifer through integrated interpretation of geophysical and hydraulic data,” Hydrogeology Journal, Vol.15, pp.225-240 (2007).
    75. Moench, Allen F., “Double-Porosity Models for a Fissured Groundwater Reservoir with Fracture skin,“ Water Resource. Research, Vol.20, No.7, pp.831-846 (1984).
    76. Moreno, L., Tsang, Y. W., Tsang, C. F., Hale, F., and Neretnieks, I., “Flow and Tracer Transport in a Single Fracture: A Stochastic Model and Its Relation to Some Field Observations,” Water Resource. Research, Vol.24, pp.2033-2048 (1988)
    77. Nathalie V. M., David, J., Martin, H., Simon, L., Philippe, A. P., and Gérard, L., “Characterizing flow zones in a fractured and karstified limestone aquifer through integrated interpretation of geophysical and hydraulic data “, Hydrogeology Journal, Vol. 15, pp.225–240 (2007).
    78. Neretnieks I., Solute transport in fracture rock––Applications to radionuclide waste repositories. In: Bear J, Tsang CF, de Marsily G, editors. Flow and contaminant transport in fractured rock., San Diego: Academic Press, Inc., pp. 39–127 (1993).
    79. Neretnieks, I., Eriksen, T., and Tahtinen, P., “Tracer movement in a single fissure in granitic rock: some experimental results and their interpretation,” Water Resour Research, Vol. 18, No. 4, pp.849–58 (1982).
    80. Neuman, S. P., “Universal scaling of hydraulic conductivities and dispersivities in geologic media.” Water Resour Research, Vol. 26, pp.1794-1758 (1990).
    81. Neuman, S.P., ”Stocastic Continuum Representation of Fractured Network Concept. “Proc. 28th Symp. On Rock Mechanics, University Arizona, Tucson, (1987).
    82. Nguyen, T. S., Borgesson, L., Chijimatsu, M., Rutqvist, J., Fujita, T., Hernelind, J., Kobayashi, A., Ohnishi, Y., Tanaka, M., and Jing L., “Hydro-mechanical Response of A Fractured Granitic Rock Mass to Excavation of A Test Pit-The Kamaishi Mine Experiment in Japan,” International Journal of Rock Mechanics and Mining Sciences, Vol. 38, No. 1, pp.79-94 (2001).
    83. Nicol, A., Walsh, J., Watterson, J., and Gillepsie, P. A., “Fault Size Distribution-Are They Really Power Law?” Journal of Structural Geology, Vol. 18, pp.191-197 (1996).
    84. Novakowski, K.S., Evans, G. V., Lever, D. A., and Raven, K. G., “A Field Example of Measuring Hydrodynamic Dispersion in a Single Fracture,” Water Resour Research, Vol. 21, pp.1165-1174 (1985).
    85. Oda, M., “Permeability Tensor for Discontinuous Rock Masses. ”Geotech, Vol. 35, pp.483-495 (1985).
    86. Odling, N. E., “Scaling And Connectivity of Joint Systems in Sandstones from Western Norway,” Journal of Structural Geology, Vol. 19, No. 10, pp.1257-1271 (1997).
    87. Pahl, P. J.,” Estimation The Mean Length of Discontinuity Traces,” International Journal of Rock Mechanics and Mining Sciences and Geomechanics Abstracts, Vol. 18, pp.221-228 (1981).
    88. Pahl, P. J.,” Estimation The Mean Length of Discontinuity Traces,” International Journal of Rock Mechanics and Mining Sciences and Geomechanics Abstracts, Vol. 18, pp.221-228 (1981)
    89. Park, Y., J., Dreuzy, J., R., and Lee, K. K., “Transport And Intersection Mixing in Random Fracture Networks with Power Length Distribution,” Water Resource. Research, Vol.37, No 10 pp.2493-2501 (2001).
    90. Parsons, R. W., “Permeability of idealized fractured rock.” Society of Petroleum Engineering Journal, Vol. 6 , pp. 126-136 (1966).
    91. Patir, N., and Cheng, H. S., “An Average Flow Model for Determining Effects of Three-dimensional Roughness on Partial Hydrodynamic Lubrication,” ASME J. Lubr. Technol. Vol. 100, pp. 12-17 (1978).
    92. Pickering, G.., Bull, J., and Sanderson, D., “Sampling Power Law Length Distribution,” Tectonophysics, Vol. 248, pp. 1-20 (1995).
    93. Piggott, A.R., and Elsworth, D., “Physical and Numerical Studies of a Fractured System Model,” Water Resource. Research, Vol.25, pp.457-462 (1989).
    94. Priest, S. D., and Hudson, J. A., “Discontinuity Spacings in Rock.” International Journal of Rock Mechanics and Mining Sciences, Vol. 13, pp. 135-148, (1976).
    95. Priest, S. D., and Samaniego, A., “A Model for The Analysis of Discontinuity Characteristic in Two Dimension,” Proc. 5th Cong. ISRM, Melbourn, F199-F207 (1983).
    96. Priest, S. D., Discontinuity Analysis for Rock Engineering, Chapman & Hall, London SE1 8HN, (1993).
    97. Pruess, K. TOUGH User's Guide, Nuclear Regulatory Commission Report NUREG/CR-4645; also: Lawrence Berkeley Laboratory Report LBL-20700, Berkeley, CA, 1987.
    98. Rejeb, A., and Bruelb, B., “Hydromechanical effects of shaft sinking at the Sellafield site,” International Journal of Rock Mechanics and Mining Sciences, Vol. 38, , pp.17-9(2001).
    99. Renshaw, C. E., “On the Relationship between Mechanical and Hydraulic Apertures in Rough-walled Fractures,” Journal of Geophysical Research, Vol. 67, pp. 24629-24636 (1995).
    100. Renshaw, C.E., “Influence of Subcritical Fracture Growth on the Connectivity of Fracture Networks,” Water Resource. Research, Vol.32, No.6, pp.1519-1530(1996).
    101. Robinson, P. C., “Connectivity of fracture systems – a percolation theory approach” Journal of Physics A, Vol. 16, pp.605-614 (1983).
    102. Robinson, P. C., “Connectivity, Flow and Transport in Network Models of Fractured Media,” Ph.D. Thesis, St. Catherines’s College (1984).
    103. Robinson, P. C., “Numerical calculations of critical densities for lines and planes.” Journal of Physics A, Vol. 17, No. 4, pp.2823-2830 (1984).
    104. Romm, E. S.,Fluid Flow in Fractured Rocks, Nedra Publishing (1966).
    105. Rouleau, A., and Gale, J.E., “Statistical Characterization of Fracture System in The Stripa Granite, Sweden,” ,” International Journal of Rock Mechanics and Mining Sciences and Geomechanics Abstracts, Vol.22, No.6, pp.353-367 (1985).
    106. Rouleau, A., and Gale, J.E., “Stochastic Discrete Fracture Simulation of Groudwater Flow into an Underground Excavation in Granite,” International Journal of Rock Mechanics and Mining Sciences and Geomechanics Abstracts, Vol.24, No.2, pp.99-112 (1987).
    107. Rowe, R.K., and Booker, J.R., “A Semi-analytical Model for Contaminant Migratoin in a Regular Two or Three Dimensional Fractured Network:Conservative Contaminants,” International Journal of Number and Anal Meth in Geomech, Vol.13, pp.531-550 (1989).
    108. Rowe, R.K., and Booker, J.R., “A Semi-analytical Model for Contaminant Migratoin in a Regular Two or Three Dimensional Fractured Network:Reactive Contaminants,” International Journal of Number and Anal Meth in Geomech, Vol.14, pp.401-425 (1990).
    109. Sahimi, M., and Mukhopadhyay, S., “Scaling properties of a percolation model with long-range correlations.” Physics Review E, Vol. 54, pp.3870-3880 (1996).
    110. Sarkar, M., “Fluid Flow Modelind in Fractures,” MIT Earth Resources Laboratory (2004).
    111. Sawada, A., Uchida, M., Shimo, M., Yamamoto, H., Takahara, H., and Doe, T. W. “Non-sorbing Tracer Migration Experiments in Fractured Rock at The Kamaishi Mine, Northeast Japan,” Eng Geology, Vol. 56, pp. 75-96(2000).
    112. Scanlon,B. R., Mace, R. E., Barrett, M. E., and Smith, B.. “Can we simulate regional groundwater flow in a karst system using equivalent porous media models? Case study, Barton Springs Edwards aquifer, USA,” Journal of Hydrology, Vol 273, pp. 137-158 (2003).
    113. Schwartz, F. W., and Smith, L., “A continuum Approach for Modeling Mass Transport in Fractured Media,” Water Resource. Research, Vol.19, No.4, pp.959-969(1988).
    114. Schwartz, F. W., Smith, L., and Crowe, AS., “A stochastic analysis of macroscopic dispersion in fracture media,” Water Resource. Research, Vol.19, No.5, pp.1253-1265 (1983).
    115. Shahimi, M., “Hydrodynamic Dispersion near The Percolation Threshold: Scaling And Probability Densities, “ Journal of Physics Applied: Math. Gen., Vol. 20, pp. L1293 (1987).
    116. Shante, V. K., and Kirkpatrick, S., “An Introduction to Percolation Theory,” Advance in Physics, Vol. 20, pp. 325-356 (1971).
    117. Sisavath, S., and Zimmerman R. W., “A Simple Model for Deviations for the Cubic Law for a Fracture undergoing Dilation or Closure,” Pure and Applied Geophysics, Vol. 160, pp. 1009-1022 (2003).
    118. Smith, L., and Schwartz, F. W., “A analysis of influence of fracture geometry on mass transport in fracture media,” Water Resource. Research, Vol.20, No.9, pp.1241-1252(1984).
    119. Snow, D. T., “Anisotropic Permeability ofFractured Media.” Water Resource Research, Vol. 5, pp. 1273-1289, (1969).
    120. Snow, D.T., “ A Parallel Plate Model of Fractured Permeable Media Ph. D dissertation,“University of Californi, Berkely ,(1965).
    121. Snow, D.T., “The Frequency and Apertures of Fractures in Rock,“International Journal of Rock Mechanics and Mining Sciences and Geomechanics Abstracts, Vol.7, pp.23-40 (1970).
    122. Stauffer, D., “Introduction to Percolation Theory,” Taylor And Philadelphia (1985).
    123. Sudicky, E.A.,“The Laplace Transform Galerkin Technique for Efficient Time-continuous Solution of Solute Transport in Double-porosity Media,” Geodermal, Vol.46, pp.209-232 (1990).
    124. Swanson, S. K., Bahr, J. M., Bradbury, K. R., and Anderson, K. M., “Evidence for preferential flow through sandstone aquifers in Southern Wisconsin.” Sedimentary Geology, Vol. 184, pp.331–342 (2006).
    125. Tsang, Y. W., and Tsang CF., “Channel model of flow through fractured media,” Water Resource Research, Vol. 23, No.3, pp.467-479 (1987).
    126. Tsang, Y. W., Tsang, C. F., and Neretnieks, I., “Moreno L. Flow and tracer transport in fractured media: a variable aperture channel model and its properties.” Water Resource Research, Vol. 24, No.12, pp.2049-2060 (1988).
    127. Van Dyke, M., “Slow Variations in Continuum Mechanics,” Adv. Appl. Mech., Vol. 25, pp.1-43 (1987).
    128. Vilks, P., and Baik, M. H., “Laboratory Migration Experiments with Radionuclides And Natural Colloids in A Granite Fracture, “ Journal of Contaminant Hydrology, Vol. 47, pp. 197-210(2001).
    129. Vilks, P., Frost, L. H., and Bachinski, D. B. “Field-scale Colloid Migration Experiments in A Granite Fracture, “ Journal of Contaminant Hydrology, Vol. 26, pp. 203-214(1997).
    130. Villaescusa, E., and Brown. E. T., “Characterizing Joint Spatial Correlation Using Geostastical Methods, Rock Joint,” Barton and Stephansson, Balkema, pp.115-122 (1990).
    131. Wallis, P. E., and King, M. S., “Discontinuity Spacing in A Crystalline Rock.” Int. J. Rock Mech. Min. Sci. & Geomech. Abstr., Vol. 17, pp. 63-66, (1980).
    132. Wang, J.S.Y., Trautz, R.C., Cook, P.J., Finsterle, S., James, A.L., and Birkholzer, J., “Field Tests and Model Analyses of Seepage into Drifts,” Journal of Contaminant Hydrology, Vol.38, pp.323-347(1999).
    133. Warren, J.E., and Root, P.J., “The Behavior of Naturally Fractured Reservoirs,” Trans. Soc. Pet. Eng. AIME, Vol.3, No.3, pp.245-255(1963).
    134. Wei Z.Q., Egger P., and Descoeudres F., “Permeability Predictions for Jointed Rocked Masses,” International Journal of Rock Mechanics and Mining Sciences and Geomechanics Abstracts, Vol.32, No.3, pp.251-261(1995).
    135. Weinrib, A., “Long-range correlated percolation.” Physics Review B, Vol. 29, pp.387-395 (1984).
    136. Weiss, L., E. “The minor Structures of Deformed Rock,” Springer-Verlag, N.Y. (1972).
    137. Wilson, C. R., and Witherspoon, P. A., “Flow Interference Effects at Fracture Intersections,” Water Resource. Research, Vol.12, No. 1, pp.102-104 (1976).
    138. Witherspoon, P. A., Wang, J. S. Y., and Iwai, K., “Validity of Cubic Law for Fluid Flow in a Deformable Rock Fracture,” Water Resources Research, Vol. 16, pp.1016-1024 (1980).
    139. Yeo, IW., and Ge, SM., “Applicable Range of the Reynolds Equation for Fluid Flow in a Rock Fracture,” Geosciences Journal, Vol. 9, No. 4, pp. 347-352 (2005).
    140. Zhang, X., and Sanderson, D. J., “Numerical Modelling of the Effects of Fault Slip on Fluid Flow around Extensional Faults, “Journal of Structural Geology, Vol. 18, pp. 108-119, (1996).
    141. Zhang, X., Harkness, M., and Last, N. C., “Evaluation of Connectivity Charaecteristics of Naturally Jointed Rock Mass,” Engineering Geology, Vol. 33, pp. 11-30, (1993).
    142. Zimmerman, R. W., and Main, I. G., “Hydromechanical Behaviour of Fractured Rocks,” Mechanics of Fluid-Saturated Rocks, pp. 361-419 (2004).
    143. Zimmerman, R. W., Kumar, S., and Bodvarsson, G.S., (1991), ”Lubrication Theory Analysis of the Permeability of Rough-walled Fractures,” International Journal of Rock Mechanics Sci., and Geomech. Abstr. , Vol. 28, No. 4, pp. 325-331.
    144. Zimmerman, R.W., Chen, G., Hadgu, T., and Bodvarsson, G.S., “A Numerical Dual-porosity Model with Semi-analytical Treatment of Fracture Matrix Flow,” Water Resource. Research, Vol.29, No.7, pp.2127-2137(1993).
    145. 王建力、林宏奕「岩石剪力破裂面粗糙度及其量測之研究」,礦冶,44(2),第155-163頁(2000)。
    146. 交通部台灣區國道新建工程局,「北宜高速公路施工階段坪林隧道湧水問題評估調查服務工作第一年度成果報告」,中興工程顧問股份有限公司 (1998)。
    147. 交通部台灣區國道新建工程局,「國道南港宜蘭快速公路工程路線評選階段坪林隧道段地質調查工作期末報告」,財團法人中興顧問工程社 (1990)。
    148. 余進利,「破裂面網路地下水流與污染物傳輸之研究」,博士論文,國立成功大學水利及海洋工程學系,臺南(1992)。
    149. 李振誥、陳昭旭,「隧道工程地下水探查技術與應用」,隧道工程地質探查技術研討會論文集,臺北,第 99-126頁 (2000) 。
    150. 李振誥、陳榮華、林碧山,「正交破裂面傳輸模式運用於蘭嶼儲存場破裂安山岩體中污染物傳輸之研究」,中國環境工程學刊,第五卷,第二期,第 149-160頁(1995)。
    151. 李禎常,「破裂岩體地下水流與污染物平均傳輸統計分佈性質之研究」,碩士論文,國立成功大學資源工程學系,臺南(2003)。
    152. 林宏奕、李振誥,「破裂岩體隧道開挖對滲透係數之影響-以雪山隧道為例」,中國礦冶工程學會會刊,第47卷,第2期,第110-122頁(2003)。
    153. 林宏奕、李振誥、洪浩原、陳尉平,「應用離散破裂面模式於岩體隧道滲流之研究-以坪林隧道為例」,中國土木水利工程學刊,第十四卷,第三期,第 429-439頁(2002)。
    154. 林碧山,「破裂岩體地下水滲流與溶質傳輸」,博士論文,國立成功大學資源工程學系,臺南(2000)。
    155. 林碧山、李振誥、李禎常、林宏奕,「破裂岩體污染物傳輸性質之研究—以蘭嶼地區為例」,台灣水利,第53卷,第1期,第34-45頁(2005) 。
    156. 洪浩原,「破裂岩體隧道滲流之研究」,碩士論文,成功大學資源工程研究所,台南(1999)。
    157. 陳明君,「頭城地區四稜砂岩水文地質及隧道湧水之研究」,碩士論文,國立台灣大學地質所,臺北 (1997)。
    158. 陳榮華,「破裂安山岩體放射性核種傳輸之研究」,博士論文,國立成功大學資源工程學系,臺南(2001)。
    159. 黃崇琅、李振誥,「應用雙孔隙模式於具膚表效應破裂含水層水力性質估計之研究」,第七屆大地工程學術研究討論會論文集,臺北,第 1113-1120頁 (1997) 。

    下載圖示 校內:立即公開
    校外:2009-08-03公開
    QR CODE