簡易檢索 / 詳目顯示

研究生: 汪雅雲
Wang, Ya-yung
論文名稱: 探討Septin12基因於精細胞末期分化之角色
The role of Septin12 in terminal differentiation of male germ cells
指導教授: 湯銘哲
Tang, Ming-Jer
郭保麟
Kuo, Pao-Lin
學位類別: 碩士
Master
系所名稱: 醫學院 - 分子醫學研究所
Institute of Molecular Medicine
論文出版年: 2009
畢業學年度: 97
語文別: 英文
論文頁數: 82
中文關鍵詞: γ-tubulinCdc42microtubules不孕症spermiogenesisseptin12
外文關鍵詞: microtubules, γ-tubulin, spermiogenesis, Cdc42, septin12, infertility
相關次數: 點閱:92下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 不孕症是一個重要的全球性健康議題。近年來,科學家們致力於找出可能與不孕症的產生相關之基因缺陷或是多型性。我們發現了對男性生殖細胞具有表現專一性的基因,Septin12。SEPT家族屬於細胞骨架蛋白且具有GTPase活性,在哺乳動物中目前發現至少有13種Septin,其參與在許多細胞的生理功能,例如細胞質分裂、細胞型態生成、細胞骨架重整以及細胞區室化…等等。Septin具有獨特特性,可形成絲狀結構物質,精確地調控Septin聚合對於其行使正常生理功能是十分重要的。已有研究指出Septin聚合過程是受到Cdc42的負向調控。而Septin所形成的絲狀物質會和細胞骨架進行交互作用,例如:microtubule。目前已知microtubules在精細胞末期分化型態上產生大幅改變過程中扮演重要的角色。然而,在Spermiogenesis過程中Septin12 會表現在精子頭部、頸部以及尾巴。因此我們推測在精原細胞尾部形成之過程中,SEPT12所形成之絲狀物質會影響microtubules的分佈並且此過程是經由Cdc42調控。
    首先經由更精細的觀察發現在小鼠生殖細胞末期分化過程中,SEPT12主要表現在減數分裂後的生殖細胞中並參與在多個不同細胞區間之形成,如精子頂體、頸部與精子中節和尾巴。藉由研究Septin12基因剃除小鼠,我們進一步瞭解SEPT12之功能。多數Septin12基因剃除嵌合公鼠為不孕,其睪丸重量明顯下降,組織切片染色後發現精子成熟過程停在round spermatid之階段。於精液分析發現,精子數目、活動力與正常型態精子數目明顯減少。此外,利用螢光免疫染色也發現在人類成熟精子上,SEPT12主要位於精子中節和尾巴交接的環狀結構,型態異常的精子其SEPT12表現量有明顯下降的情形,此結果在精子無力症患者更為明顯。接著在探討SEPT12 與tubulin之關係,首先利用免疫螢光染色以及共同免疫沈澱法證實SEPT12和α, β及γ-tubulin之間有交互作用。藉由觀察Septin12基因剃除嵌合公鼠睪丸切片之免疫螢光染色,發現在SEPT12表現量下降時,α以及β-tubulin失去正常分佈位置,此結果可能導致精原細胞無法形成尾部。更進一步地利用RNAi降低NT2/D1細胞中內生性SEPT12表現量,其細胞螢光染色與睪丸組織切片結果相似,α以及β-tubulin在細胞內分佈受到SEPT12表現量下降影響。總括以上研究結果,我們認為SEPT12與microtubules之間的交互作用於精子末期分化過程中扮演重要的角色。

    During the past years, tremendous attempts have been made to identify genetic defects or polymorphisms that are associated with human infertility, which is a major healthy problem worldwide. We have identified a sterility related and male germ-cell specific gene, Septin12. Mammalian septins constitute a family of at least 13 cytoskeletal proteins with GTPase activity, and are involved in many cellular process such as cytokinesis, cellular morphogenesis, vesicle trafficking and cytoskeleton remodeling. SEPTINS can form homo- or heterooligomeric filaments, and the accurate regulation of septin assembly is necessary for physiological functions of septins. Previous studies showed that SEPT organization is negatively regulated by Cdc42. septin filaments can form network with microtubules, which are actively involved in tail formation and other morphologic changes during terminal differentiation of male germ cells. Considering SEPT12 is expressed at the sperm neck and tail during spermiogenesis, we proposed that SEPT12 filaments formation affects microtubules organization during sperm elongation and this process is regulated by CDC42.
    Through more detailed observation, we found that SEPT12 is involved in the formation of multiple subcellular compartments, such as acrosome, neck, middle piece and tail, during terminal differentiation. We also generated Septin12 knock-out mice. Most of the chimeric mice were infertile and the testicular phenotypes appeared maturation arrest at the round spermatid stage. Semen analysis of the chimeras showed the decrease of sperm counts and motility, and defects involving all subcellular compartments. In human, SEPT12 signals were significantly decreased in sperm with abnormal morphology. We tested the effect of CDC42 on SEPT12 filament formation, and found that the filament formation of septin12 was negatively regulated by Cdc42. We also evaluated the relation between SEPT12 and microtubules by immunofluorescence staining (IFA) and co-immunoprecipitation. Our results support the interaction between SEPT12 and α-, β- or γ-tubulin. We also found microtubules disorganization which may lead to maturation arrest in the testicular sections of Septin12+/- chimeras. We further verified the effect of SEPT12 on the microtubule organization. RNAi was used to deplete the expression of endogenous SEPT12 in NT2/D1 cells. The organizations of α- and β-tubulin of setpin12-depleted cells were altered. Our results inferred that the cooperation of SEPT12 and tubulin is critical during mammalian sperm elongation.

    ABSRTACT IN CHINESE ii ABSTRACT IN ENGLISH iv ACKNOWLEDGEMENT vi TABLE OF CONSTENTS viii LIST OF TABLES xi LIST OF FIGURES xii LIST 0F ABBREVIATIONS xiv 1.INTRODUCTION 1 1.1 Male infertility 1 1.2 The process of spermatogenesis 2 1.3 Genes involve in spermatogenesis 3 1.4 Identification of the candidate sterile gene during mammalian spermatogenesis 4 1.5 Septin gene family 5 1.6 Septins relevant to human diseases 6 1.7 Regulation of septin assembly 7 1.8 Septins in cytoskeleton organization 9 1.9 Septin12 11 1.10 Objectives of this study 11 2. MATERIALS AND METHODS 13 2.1 Subjects 13 2.2 Total RNA isolation 13 2.3 Reverse Transcriptase-Polymerase Chain Reaction 14 2.4 Polymerase Chain Reaction (PCR) 15 2.5 Site-directed mutagenesis 16 2.6 Cell culture .. 17 2.7 Transient transfection and stable cell line selection 18 2.7.2.1 Transient transfection 19 2.7.2.2 The selection of stable clone 20 2.8 Total protein extraction 20 2.9 Co-Immumoprecipitation analysis, Co-IP 21 2.10 Western Blot analysis 22 2.11 Sperm preparation 23 2.12 Semen analysis 24 2.12.2.1 For spermatozoa collected from cauda epididymis 24 2.12.2.2 For determining the morphology of patient’s sperm 25 2.13 Separation of the testicular germ cell population 25 2.14 Immunofluorescence assay, IFA 26 2.14.1 For testicular sections embed in paraffin blocks 26 2.14.2 For sperm smear preparations 28 2.14.3 For cell 30 2.15 Statistical analysis 32 3. RESULT 33 3.1 The expression pattern of SEPT12 in terminal differentiation 33 3.2 The reproductive phenotypes of the Septin12+/- chimeric mice 34 3.3 Diminished expression of SEPT12 in human spermatozoa with abnormal morphology 35 3.4 Cdc42 alter the organization status of SEPT12 in vitro 36 3.5 SEPT12 co-localizes with microtubules during sperm elongation 37 3.6 SEPT12 interacts with tubulin in vitro 38 3.7 Loss of SEPT12 expression leads to α- and β-tubulin disorganization in the testes of Septin12+/- chimeric mice 39 3.8 Knockdown SEPT12 expression alter the organization of α- and β-tubulin in vitro 40 4. DISCUSSION 41 4.1 The functional role of SEPT12 in spermiogenesis 41 4.2 The interaction of SEPT12 filament and microtubules 42 4.3 SEPT12 depletion also induces incomplete cytokinesis 43 4.4 Post-translational modification of tubulin 44 4.5 SEPT12 is probably implicated in the acrosome formation 46 References 48 Figure 55 Table 80 Appendix 1. Diagram of the 12 stages for the production of spermatozoa in the mouse seminiferous epithelium 81 CURRICULUMVITAE 82

    Abou-Haila, A., Tulsiani, D. R., Mammalian sperm acrosome: formation, contents, and function. Arch Biochem Biophys. 379, 173-82. 2000.
    Brugh, V. M., 3rd, Lipshultz, L. I., Male factor infertility: evaluation and management. Med Clin North Am. 88, 367-85. 2004.
    Burrows, J. F., Chanduloy, S., McIlhatton, M. A., Nagar, H., Yeates, K., Donaghy, P., Price, J., Godwin, A. K., Johnston, P. G., Russell, S. E., Altered expression of the septin gene, SEPT9, in ovarian neoplasia. J Pathol. 201, 581-8. 2003.
    Chapin, R. E., Wine, R. N., Harris, M. W., Borchers, C. H., Haseman, J. K., Structure and control of a cell-cell adhesion complex associated with spermiation in rat seminiferous epithelium. J Androl. 22, 1030-52. 2001.
    Cid, V. J., Adamikova, L., Sanchez, M., Molina, M., Nombela, C., Cell cycle control of septin ring dynamics in the budding yeast. Microbiology. 147, 1437-50. 2001.
    Clermont, Y., Kinetics of spermatogenesis in mammals: seminiferous epithelium cycle and spermatogonial renewal. Physiol Rev. 52, 198-236. 1972.
    Cooke, H. J., Saunders, P. T., Mouse models of male infertility. Nat Rev Genet. 3, 790-801. 2002.
    Escalier, D., [Animal models: Candidate genes for human male infertility]. Gynecol Obstet Fertil. 34, 827-30. 2006.
    Fernandes, A. P., Curi, G., Franca, F. G., Bao, S. N., Nuclear changes and acrosome formation during spermiogenesis in Euchistus heros (Hemiptera: Pentatomidae). Tissue Cell. 33, 286-93. 2001.
    Gaertig, J., Wloga, D., Ciliary tubulin and its post-translational modifications. Curr Top Dev Biol. 85, 83-113. 2008.
    Gladfelter, A. S., Bose, I., Zyla, T. R., Bardes, E. S., Lew, D. J., Septin ring assembly involves cycles of GTP loading and hydrolysis by Cdc42p. J Cell Biol. 156, 315-26. 2002.
    Gladfelter, A. S., Moskow, J. J., Zyla, T. R., Lew, D. J., Isolation and characterization of effector-loop mutants of CDC42 in yeast. Mol Biol Cell. 12, 1239-55. 2001.
    Gliki, G., Ebnet, K., Aurrand-Lions, M., Imhof, B. A., Adams, R. H., Spermatid differentiation requires the assembly of a cell polarity complex downstream of junctional adhesion molecule-C. Nature. 431, 320-4. 2004.
    Greenbaum, M. P., Ma, L., Matzuk, M. M., Conversion of midbodies into germ cell intercellular bridges. Dev Biol. 305, 389-96. 2007.
    Greer, K., Maruta, H., L'Hernault, S. W., Rosenbaum, J. L., Alpha-tubulin acetylase activity in isolated Chlamydomonas flagella. J Cell Biol. 101, 2081-4. 1985.
    Hall, P. A., Jung, K., Hillan, K. J., Russell, S. E., Expression profiling the human septin gene family. J Pathol. 206, 269-78. 2005.
    Hall, P. A., Russell, S. E., The pathobiology of the septin gene family. J Pathol. 204, 489-505. 2004.
    Hammond, J. W., Cai, D., Verhey, K. J., Tubulin modifications and their cellular functions. Curr Opin Cell Biol. 20, 71-6. 2008.
    Hanai, N., Nagata, K., Kawajiri, A., Shiromizu, T., Saitoh, N., Hasegawa, Y., Murakami, S., Inagaki, M., Biochemical and cell biological characterization of a mammalian septin, Sept11. FEBS Lett. 568, 83-8. 2004.
    Hoyle, H. D., Turner, F. R., Raff, E. C., Axoneme-dependent tubulin modifications in singlet microtubules of the Drosophila sperm tail. Cell Motil Cytoskeleton. 65, 295-313. 2008.
    Ihara, M., Kinoshita, A., Yamada, S., Tanaka, H., Tanigaki, A., Kitano, A., Goto, M.,Okubo, K., Nishiyama, H., Ogawa, O., Takahashi, C., Itohara, S., Nishimune, Y., Noda, M., Kinoshita, M., Cortical organization by the septin cytoskeleton is essential for structural and mechanical integrity of mammalian spermatozoa. Dev Cell. 8, 343-52. 2005.
    Ito, H., Iwamoto, I., Morishita, R., Nozawa, Y., Narumiya, S., Asano, T., Nagata, K., Possible role of Rho/Rhotekin signaling in mammalian septin organization. Oncogene. 24, 7064-72. 2005.
    Janke, C., Rogowski, K., Wloga, D., Regnard, C., Kajava, A. V., Strub, J. M., Temurak, N., van Dijk, J., Boucher, D., van Dorsselaer, A., Suryavanshi, S., Gaertig, J., Edde, B., Tubulin polyglutamylase enzymes are members of the TTL domain protein family. Science. 308, 1758-62. 2005.
    Joberty, G., Perlungher, R. R., Sheffield, P. J., Kinoshita, M., Noda, M., Haystead, T., Macara, I. G., Borg proteins control septin organization and are negatively regulated by Cdc42. Nat Cell Biol. 3, 861-6. 2001.
    Kato, A., Nagata, Y., Todokoro, K., Delta-tubulin is a component of intercellular bridges and both the early and mature perinuclear rings during spermatogenesis. Dev Biol. 269, 196-205. 2004.
    Kinoshita, A., Kinoshita, M., Akiyama, H., Tomimoto, H., Akiguchi, I., Kumar, S., Noda, M., Kimura, J., Identification of septins in neurofibrillary tangles in Alzheimer's disease. Am J Pathol. 153, 1551-60. 1998.
    Kinoshita, M., Assembly of mammalian septins. J Biochem. 134, 491-6. 2003a.
    Kinoshita, M., The septins. Genome Biol. 4, 236. 2003b.
    Kinoshita, M., Diversity of septin scaffolds. Curr Opin Cell Biol. 18, 54-60. 2006.
    Kinoshita, M., Field, C. M., Coughlin, M. L., Straight, A. F., Mitchison, T. J., Self- and actin-templated assembly of Mammalian septins. Dev Cell. 3, 791-802. 2002.
    Kissel, H., Georgescu, M. M., Larisch, S., Manova, K., Hunnicutt, G. R., Steller, H., The Sept4 septin locus is required for sperm terminal differentiation in mice. Dev Cell. 8, 353-64. 2005.
    Kremer, B. E., Haystead, T., Macara, I. G., Mammalian septins regulate microtubule stability through interaction with the microtubule-binding protein MAP4. Mol Biol Cell. 16, 4648-59. 2005.
    Kroschewski, R., Hall, A., Mellman, I., Cdc42 controls secretory and endocytic transport to the basolateral plasma membrane of MDCK cells. Nat Cell Biol. 1, 8-13. 1999.
    Lhuillier, P., Rode, B., Escalier, D., Lores, P., Dirami, T., Bienvenu, T., Gacon, G., Dulioust, E., Toure, A., Absence of annulus in human asthenozoospermia: case report. Hum Reprod. 24, 1296-303. 2009.
    Lin, Y. H., Lin, Y. M., Teng, Y. N., Hsieh, T. Y., Lin, Y. S., Kuo, P. L., Identification of ten novel genes involved in human spermatogenesis by microarray analysis of testicular tissue. Fertil Steril. 86, 1650-8. 2006.
    Lin, Y. H., Lin, Y. M., Wang, Y. Y., Yu, I. S., Lin, Y. W., Wang, Y. H., Wu, C. M., Pan, H. A., Chao, S. C., Yen, P. H., Lin, S. W., Kuo, P. L., The expression level of septin12 is critical for spermiogenesis. Am J Pathol. 174, 1857-68. 2009.
    Manandhar, G., Simerly, C., Schatten, G., Highly degenerated distal centrioles in rhesus and human spermatozoa. Hum Reprod. 15, 256-63. 2000.
    Matzuk, M. M., Lamb, D. J., Genetic dissection of mammalian fertility pathways. Nat Cell Biol. 4 Suppl, s41-9. 2002.
    Matzuk, M. M., Lamb, D. J., The biology of infertility: research advances and clinical challenges. Nat Med. 14, 1197-213. 2008.
    Moreno, R. D., Palomino, J., Schatten, G., Assembly of spermatid acrosome depends on microtubule organization during mammalian spermiogenesis. Dev Biol. 293,52, 218-27. 2006.
    Nagata, K., Asano, T., Nozawa, Y., Inagaki, M., Biochemical and cell biological analyses of a mammalian septin complex, Sept7/9b/11. J Biol Chem. 279, 55895-904. 2004.
    Nagata, K., Inagaki, M., Cytoskeletal modification of Rho guanine nucleotide exchange factor activity: identification of a Rho guanine nucleotide exchange factor as a binding partner for Sept9b, a mammalian septin. Oncogene. 24, 65-76. 2005.
    Nagata, K., Kawajiri, A., Matsui, S., Takagishi, M., Shiromizu, T., Saitoh, N., Izawa, I., Kiyono, T., Itoh, T. J., Hotani, H., Inagaki, M., Filament formation of MSF-A, a mammalian septin, in human mammary epithelial cells depends on interactions with microtubules. J Biol Chem. 278, 18538-43. 2003.
    Raff, E. C., Hoyle, H. D., Popodi, E. M., Turner, F. R., Axoneme beta-tubulin sequence determines attachment of outer dynein arms. Curr Biol. 18, 911-4. 2008.
    Rapley, E. A., Crockford, G. P., Teare, D., Biggs, P., Seal, S., Barfoot, R., Edwards, S., Hamoudi, R., Heimdal, K., Fossa, S. D., Tucker, K., Donald, J., Collins, F., Friedlander, M., Hogg, D., Goss, P., Heidenreich, A., Ormiston, W., Daly, P. A., Forman, D., Oliver, T. D., Leahy, M., Huddart, R., Cooper, C. S., Bodmer, J. G., Easton, D. F., Stratton, M. R., Bishop, D. T., Localization to Xq27 of a susceptibility gene for testicular germ-cell tumours. Nat Genet. 24, 197-200. 2000.
    Schmidt, K., Nichols, B. J., Functional interdependence between septin and actin cytoskeleton. BMC Cell Biol. 5, 43. 2004.
    Schultz, N., Hamra, F. K., Garbers, D. L., A multitude of genes expressed solely in meiotic or postmeiotic spermatogenic cells offers a myriad of contraceptive targets. Proc Natl Acad Sci U S A. 100, 12201-6. 2003.
    Sheffield, P. J., Oliver, C. J., Kremer, B. E., Sheng, S., Shao, Z., Macara, I. G., Borg/septin interactions and the assembly of mammalian septin heterodimers, trimers, and
    filaments. J Biol Chem. 278, 3483-8. 2003.
    Silverman-Gavrila, R. V., Silverman-Gavrila, L. B., Septins: new microtubule interacting partners. ScientificWorldJournal. 8, 611-20. 2008.
    Sisson, J. C., Field, C., Ventura, R., Royou, A., Sullivan, W., Lava lamp, a novel peripheral golgi protein, is required for Drosophila melanogaster cellularization. J Cell Biol. 151, 905-18. 2000.
    Smith, G. R., Givan, S. A., Cullen, P., Sprague, G. F., Jr., GTPase-activating proteins for Cdc42. Eukaryot Cell. 1, 469-80. 2002.
    Spiliotis, E. T., Hunt, S. J., Hu, Q., Kinoshita, M., Nelson, W. J., Epithelial polarity requires septin coupling of vesicle transport to polyglutamylated microtubules. J Cell Biol. 180, 295-303. 2008.
    Spiliotis, E. T., Kinoshita, M., Nelson, W. J., A mitotic septin scaffold required for Mammalian chromosome congression and segregation. Science. 307, 1781-5. 2005.
    Spiliotis, E. T., Nelson, W. J., Here come the septins: novel polymers that coordinate intracellular functions and organization. J Cell Sci. 119, 4-10. 2006.
    Sudo, K., Ito, H., Iwamoto, I., Morishita, R., Asano, T., Nagata, K., SEPT9 sequence alternations causing hereditary neuralgic amyotrophy are associated with altered interactions with SEPT4/SEPT11 and resistance to Rho/Rhotekin-signaling. Hum Mutat. 28, 1005-13. 2007.
    Surka, M. C., Tsang, C. W., Trimble, W. S., The mammalian septin MSF localizes with microtubules and is required for completion of cytokinesis. Mol Biol Cell. 13, 3532-45. 2002.
    Tachibana, M., Terada, Y., Murakawa, H., Murakami, T., Yaegashi, N., Okamura, K., Dynamic changes in the cytoskeleton during human spermiogenesis. Fertil Steril. 84 Suppl 2, 1241-8. 2005.
    Versele, M., Thorner, J., Some assembly required: yeast septins provide the instruction manual. Trends Cell Biol. 15, 414-24. 2005.
    Vogt, P. H., Molecular genetics of human male infertility: from genes to new therapeutic perspectives. Curr Pharm Des. 10, 471-500. 2004.
    Wang, T., Morgan, J. I., The Purkinje cell degeneration (pcd) mouse: an unexpected molecular link between neuronal degeneration and regeneration. Brain Res. 1140, 26-40. 2007.
    Webster, D. R., Borisy, G. G., Microtubules are acetylated in domains that turn over slowly. J Cell Sci. 92 ( Pt 1), 57-65. 1989.
    Yan, W., Male infertility caused by spermiogenic defects: lessons from gene knockouts. Mol Cell Endocrinol. 306, 24-32. 2009.

    下載圖示 校內:2013-07-09公開
    校外:2013-07-31公開
    QR CODE