簡易檢索 / 詳目顯示

研究生: 鄭恩勝
Cheng, En-Sheng
論文名稱: 基於光分碼多工技術之多重協定標籤交換網路中之標籤重用架構
Label Reuse Scheme in Multi-Protocol Label Switching Networks Based on Optical Code-Division Multiplexing
指導教授: 楊朝欽
Yang, Chao-Chin
黃振發
Huang, Jen-Fa
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電腦與通信工程研究所
Institute of Computer & Communication Engineering
論文出版年: 2019
畢業學年度: 107
語文別: 英文
論文頁數: 52
中文關鍵詞: 光學分碼多工多重協定標籤交換網路頻域振幅編碼標籤堆疊鎮陣列波導光柵
外文關鍵詞: Arrayed-waveguide grating(AWG), Label stacking, Multi-protocol label switching(MPLS), Optical code division multiplexing(OCDM), Spectral Amplitude Coding(SAC)
相關次數: 點閱:76下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在傳統之基於頻域振幅編碼的多重協定標籤交換網路中,會分配光學碼給網路中的傳送節點,並於入口節點處將路徑上的標籤資訊嵌入使用者的封包位元中。相較於傳統的多重協定標籤交換網路,此架構節省了查找表中標籤的使用數目,也簡化了封包在傳送節點上標籤辨認及轉送的機制。然而在未來的光網路中,隨著使用者以及流量不斷地快速增長,會期望光網路能夠支援更大量的使用者。為此,本論文提出了多重協定標籤交換網路中之標籤重用架構。
    標籤重用(Label Reuse)的架構,適合應用於多重協定標籤交換(Multi-Protocol Label Switching, MPLS)網路中。藉由在不同的封包交換路徑相互獨立的節點上重複使用標籤,以減少使用者封包位元裡的隱含式標籤堆疊(Label Stacking)中光學標籤碼的堆疊數量。在此架構下,由於標籤被重複使用,原來有限的可使用標籤數目能被節省,相較於原先之架構,可支援的使用者數量會有顯著的增加。另一方面,也使得標籤堆疊中光學碼的堆疊數量減少,因此標籤堆疊中光學碼彼此間的相位雜訊(Phase Intensity Induced Noise, PIIN)干擾也能降低。對於封包標籤的實現方式,我們選用頻域振幅編碼(Spectral Amplitude Coding, SAC),除了簡化網路節點中,標籤產生及辨認機制之過程,也由於碼向量之間保有正交性,因此與標籤堆疊架構相容,在封包透過節點的傳送過程中,能省略重覆移除及新增標籤之操作,加快封包傳送的速度。

    In a multi-protocol label switching (MPLS) network based on optical code division multiplexing (OCDM), each core switching node is assign with one code sequence with N chips for each specific input/output pair. With optical code division multiplexing, it creates a new way to utilize optical codes as optical labels. In this method, logic operations corresponded a look-up table is avoided, which is the toughest challenge for optical processing. Instead, it only needs to check the label in the core node with the function of optical correlation.
    As the users and Internet traffic continue to grow rapidly, it is expected that optical networks will support a larger number of users in the future. However, there is a scalability problem that the more the number of core nodes exists, the more code sequences are needed. To solve this critical problem, we consider a situation that can reuse label in order to save the number of utilized labels. Under this structure, there is a significant increase in the number of users that can be supported compared to the original ones. In this thesis, we compare the relationship of the number of utilized labels and supported LSPs (label switching paths) in both situations with and without reusing labels. We also discuss the issue of cost efficiency and bandwidth efficiency. Further, the discussion of BER performance is also included.

    中文摘要................................................I ABSTRACT...............................................II CONTENTS...............................................III LIST OF TABLES.........................................V LIST OF FIGURES........................................VI Chapter 1 Introduction.................................1 1.1 The Concept of Multi-Protocol Label Switching......2 1.2 Optical Multi-Protocol Label Switching Techniques..3 1.2.1 Time-Division Multiplexed Optical MPLS...........5 1.2.2 Wavelength-Division Multiplexed Optical MPLS.....6 1.2.3 Code-Division Multiplexed Optical MPLS...........7 1.3 The motivation of our research.....................8 1.4 Thesis Preview.....................................9 Chapter 2 Label Staking Based on SAC-OCDMA.............10 2.1 Spectral Amplitude Coding OCDMA Systems............11 2.2 FBG-based SAC-OCDMA system.........................15 2.3 AWG-based SAC-OCDMA system.........................20 2.4 System Structure Design............................22 Chapter 3 Concept of Label Reuse in MPLS Networks based on SAC-OCDMA..............................................27 3.1 Optical Orthogonal Codes...........................28 3.2 Maximal-Length Sequence Codes......................31 3.3 Apply Label Reuse Scheme on OCDM to MPLS Networks..33 Chapter 4. Comparison and Discussion...................38 4.1 Fixed Numbers of Supported LSPs....................38 4.2 Fixed Numbers of Utilized Labels...................42 4.3 Mathematical Relationship..........................43 4.4 Cost Efficiency and Bandwidth Efficiency...........44 4.5 Bit Error Rate Performance..........................45 Chapter 5. Conclusions.................................48 References............................................49

    [1] Rong Xu, Qian Gong and Peida Ye, “A novel IP with MPLS over WDM-based broadband wavelength switched IP network,” J. Lightw. Technol, vol. 19, pp. 596–602, 2001.
    [2] Hooshang Ghafouri-Shiraz. and M. Massoud Karbassian, OPTICAL CDMA NETWORKS: PRINCIPLES, ANALYSIS AND APPLICATIONS. John Wiley & Sons Ltd, United Kingdom, 2012.
    [3] Luc De Ghein, MPLS Fundamentals. Cisco Press, USA, 2007.
    [4] Rajat Kumar Singh and Yatindra Nath Singh, “An overview of photonic packet switching architectures,” IETE Technical Review, vol. 23, pp. 15–34, 2006.
    [5] Naoya Wada, Hiroaki Harai, Wataru Chujo and Fumito Kubota, “Photonic packet switching based on multi-wavelength label switching using fiber Bragg gratings,” ECOC, Munich, Germany ,2000.
    [6] J. Capmany, D. Pastor, S. Sales and B. Ortega, “Subcarrier multiplexed optical label swapping based on subcarrier multiplexing: a network paradigm for the implementation of optical Internet,” ICTON, Warsaw, Poland, 2003.
    [7] K. Kitayama, N. Wada, H. Sotobayashi, “Architectural considerations for photonic IP router based on optical code correlation,” J. Lightw. Technol, vol. 18, pp. 1834–1844, 2000.
    [8] T. Khattab and H. Alnuweiri, “Optical CDMA for all-optical sub-wavelength switching in core GMPLS networks,” J. on Selected Areas in Comm., vol. 25, pp. 905–921, 2007.
    [9] N. Wada and K. Kitayama, “10 Gb/s optical code division multiplexing using 8-chip optical bipolar code and coherent detection,” J. Lightw. Technol, vol. 17, pp. 1758–1765, 1999.
    [10] A. Viswanathan, N. Feldman, Z. Wang, and R. Callon, “Evolution of multiprotocol label switching,” IEEE Communication Magazine, vol. 36, pp. 165–173, 1998.
    [11] Mahesh Kumar Porwal, Anjulata Yadav, and S.V. Charhate, “Traffic Analysis of MPLS and Non MPLS Network including MPLS Signaling Protocols and Traffic Distribution in OSPF and MPLS,” ICETET, Nagpur, Maharashtra, 2008.
    [12] K. Kitayama, and N. Wada, “Photonic IP routing,” IEEE Photonics Tech. Letters, vol. 11, pp. 1689¬¬–1691, 1999.
    [13] R. Menendez, “Network applications of cascaded passive code translation for WDM-compatible spectrally phase-encoded optical CDMA,” J. Lightw. Technol, vol. 23, pp. 3219–3230, 2005.
    [14] N. Yan, I.T. Monroy, and T. Koonen, “All-optical label swapping node architectures and contention resolution,” Proc. of Optical Network Design and Modelling, 2005.
    [15] Q. Zheng, and M. Gurusamy, “LSP partial spatial-protection in MPLS over WDM optical networks,” IEEE Trans on Comm., vol. 57, pp. 1109-1118, 2009.
    [16] Dagong Jia, Chuang Du, Zhe Ji, Hongxia Zhang, Tiegen Liu and Yimo Zhang, “An Approach for Increasing User Capacity of OCDMA System Based on Vernier Effect,” Journal of Lightwave Technology, vol. 34, pp. 4877-4883, 2016.
    [17] Wang hsai Yang and Cheng-shong Wu, “Optical CDMA Label Encoding for Optical Packet Switching in All-Optical Networks,” 14th IEEE International Conference on Networks, Singapore, vol. 2, pp. 1-5, 2006.
    [18] Anita Borude and Shobha Krishnan, “Simulation of Optical CDMA using OOC Code,” IJSRP, vol. 2, 2012.
    [19] Aboagye Adjaye Isaac, Cao Yongsheng, Chen Fushen and Affum Emmanuel Ampoma, “Performance of 40, 80 and 112 Gb/s PDM-DQPSK optical label switching system with spectral amplitude code labels,” 22nd Asia-Pacific Conference on Communications (APCC), Yogyakarta, Indonesia, pp. 161-166, 2016.
    [20] Sheng-Hui Meng, Kai-Sheng Chen, Jen-Fa Huang and Chao-Chin Yang, “Orthogonal stacked composite M-sequence labels for quick packet routing over optical MPLS network,” IEEE 28th Canadian Conference on Electrical and Computer Engineering (CCECE), Halifax, NS, Canada, pp. 908-913, 2015.
    [21] P. Seddighian, et al., “Label Stacking in Photonic Packet-Switched Networks With Spectral Amplitude Code Labels,” IEEE J. Lightwave Technology, vol. 25, pp. 463-471, 2007.
    [22] A. M. Alhassan, N. Badruddin, N. M. Saad, and S. A. Aljunid, “A multi photodiode balanced detection technique for spectral amplitude coding OCDMA systems,” IEEE ICIAS, vol. 2, 2012.
    [23] M. Kavehrad, and D. Zaccarin, “Optical code division-multiplexed systems based on spectral encoding of noncoherent sources,” IEEE J. Lightw. Technology, vol. 13, pp. 534-545, 1995.
    [24] F. Yamamoto, and T. Sugie, “Reduction of optical beat interference in passive optical networks using CDMA technique,” IEEE Photonics Tech. Letters, vol. 12, pp. 1710-1712, 2000.
    [25] Z. Wei, H. Ghafouri-Shiraz, and H.M.H. Shalaby, “Performance analysis of optical spectral-amplitude-coding CDMA systems using super-fluorescent fiber source,” IEEE Photonics Tech. Letters, vol. 13, pp. 889-889, 2001.
    [26] P. Laakkonena, M. Kuittinen, and J. Turunena, “Coated phase masks for proximity printing of Bragg gratings,” Optics Communications, vol. 192, pp.153-159, 2001.
    [27] H. Li, “Optimization of a continuous phase-only sampling for high channel–count fiber Bragg gratings,” Optics Express, vol. 14, pp. 3152-3160, 2006
    [28] A. Othonos, and K. Kalli, “Fiber Bragg gratings: fundamentals and applications in telecommunications and sensing,” Artech House, Boston, USA.
    [29] H. Tsuda, “Photonic spectral encoder/decoder using an arrayed-waveguide grating for coherent optical code division multiplexing,” Proc. WDM Components, Trends in Optics and Photonics, 1999.
    [30] M. C. Hauer, J. E. McGeehan, S. Kumar, J. D. Touch, J. Bannister, E. R. Lyons, C. H. Lin, A. A. Au, H. P. Lee, D. S. Starodubov, and A. E. Willner, “Optically assisted internet routing using arrays of novel dynamically reconfigurable FBG-based correlators,” J. Lightw. Technol., vol. 21, no. 11, pp. 2765–2776, 2003.
    [31] V. J. Hernandez, A. J. Mandez, C.V. Bennett, R. M. Gagliardi, and W. J. Lennon, “Bit error rate analysis of a sixteen-user gigabit Ethernet optical CDMA (OCDMA) technology demonstrator using wavelength/time codes,” IEEE Photonic Technology Letters, vol. 17, pp. 2784-2786, 2005.
    [32] A. Stok, and E. H. Sargent, “Lighting the local network: Optical code division multiple access and quality of service provisioning”, IEEE Networks, vol. 14, pp. 42–46, 2000.
    [33] Kai-Sheng Chen, Chao-Chin Yang, Jen-Fa Huang, “Stuffed Quadratic Congruence Codes for SAC Labels in Optical Packet Switching Network,” IEEE Communications Letters, vol. 19, pp. 1093-1096, 2015

    下載圖示 校內:2024-09-01公開
    校外:2024-09-01公開
    QR CODE