| 研究生: |
陳權輝 Chen, Quan-Hui |
|---|---|
| 論文名稱: |
應用簡易共軛梯度法於脈衝管史特靈引擎之最佳化設計 Optimal Design of a Pulse-Tube Stirling Engine by Simplified Conjugate Gradient Method |
| 指導教授: |
鄭金祥
Cheng, Chin-Hsiang |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 航空太空工程學系 Department of Aeronautics & Astronautics |
| 論文出版年: | 2015 |
| 畢業學年度: | 103 |
| 語文別: | 中文 |
| 論文頁數: | 94 |
| 中文關鍵詞: | 脈衝管史特靈引擎 、簡易共軛梯度 、權重分析 |
| 外文關鍵詞: | Pulse- Tube Stirling engine, Simplified conjugate gradient method, Weighting analysis |
| 相關次數: | 點閱:68 下載:8 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究利用簡易共軛梯度法(Simplified conjugate gradient method, SCGM),探討脈衝管史特靈引擎之性能最佳化,以理論模式進行疊代分析,得設計參數最佳值。並將最佳化後的設計參數,代入理論模式,討論引擎在運轉過程中,溫度、壓力、質量等熱力性質變化,以及針對工作流體在各腔室因流動所造成的壓力降損失。最佳化分析中,除了單一目標函數僅對功率或熱效率進行最佳值搜尋外,本研究亦探討在目標函數中加入多重目標條件,同時針對功率與熱效率兩個目標進行最佳化。此目標函數將以權重分配比例大小進行最佳化疊代,由結果證明此方法確實可以應用於多目標最佳化。另外,在完全以引擎功率為考量,進行最佳化疊代,在六種設計參數收斂於最佳值後,根據此設計參數實際製作出一最佳化原型機。在實驗量測為填充一大氣壓空氣與加熱溫度1000 條件下,量測脈衝管史特靈引擎最大輸出功率,由基準組原型機22.35 W提升至31.83 W,整體性能提升1.42倍。
In this study, simplified conjugate gradient method is utilized for investigation of optimal performance of a pulse-tube Stirling engine. Design of new parameter is searched for optimization by the theoretical model. The optimal analysis not only searches simple power or thermal efficiency but seeks for both power output and thermal efficiency at the same time in the optimization. Adding the weighting ratio into the objective function, a result for the multi-objective condition can be tested and verified by simplified conjugate gradient method. By combining the thermodynamic model with simplified conjugate gradient method, six geometric parameters are optimized. A prototype engine was revised according to the optimal parameters, and the output of it could be increase from 22.35 W to 31.83 W under the initial pressure of 1 atm and heating temperature of 1000˚C. The toal performance improvement is 42%.
[1] 徐天佑、曾鴻陽, "台灣地區有關太陽能日照量之環境時空因素研究探討," 2007.
[2] S. Taggart, "CSP: Dish projects inch forward," Renewable Energy Focus, vol. 9, pp. 52-54, 2008.
[3] M. Abbas, B. Boumeddane, N. Said, and A. Chikouche, "Dish Stirling technology: a 100 MW solar power plant using hydrogen for Algeria," International Journal of Hydrogen Eenergy, vol. 36, pp. 4305-4314, 2011.
[4] C. Cinar, S. Yucesu, T. Topgul, and M. Okur, "Beta-type Stirling engine operating at atmospheric pressure," Applied Energy, vol. 81, pp. 351-357, 2005.
[5] I. Batmaz and S. Üstün, "Design and manufacturing of a V-type Stirling engine with double heaters," Applied Energy, vol. 85, pp. 1041-1049, 2008.
[6] C. M. Hargreaves, "The Phillips Stirling engine," Elsevier ,New York, 1991.
[7] W. E. Gifford and R. Longsworth, "Pulse-tube refrigeration," Journal of Manufacturing Science and Engineering, vol. 86, pp. 264-268, 1964.
[8] N. C. J. Chen and C.D. West, "A single-cylinder valveless heat engine," in The 22th Intersociety Energy Conversion Engineering Conference, Oak Ridge National Lab., TN,USA, 1987.
[9] P. L. Tailer, "Thermal lag test engines evaluated and compared to equivalent Stirling engines," American Society of Mechanical Engineers, New York, NY, USA, 1995.
[10] P. L. Tailer, "External combustion Otto cycle thermal lag engine," in The 28 th Intersociety Energy Conversion Engineering Conference, Atlanta, GA, USA, pp. 943-947, 1993.
[11] K. Hamaguchi, Y. Ushijima, and Y. Hiratsuka, "Basic characteristics of pulse tube engine," Proceedings of the 12th ISection, pp. 275-84, 2005.
[12] A. J. Organ, The air engine: Stirling cycle power for a sustainable future: Elsevier, 2007.
[13] K. Hamaguchi, H. Futagi, T. Yazaki, and Y. Hiratsuka, "Measurement of work generation and improvement in performance of a pulse tube engine," Journal of Power and Energy Systems, vol. 2, pp. 1267-1275, 2008.
[14] T. Yoshida, T. Yazaki, H. Futaki, K. Hamaguchi, and T. Biwa, "Work flux density measurements in a pulse tube engine," Applied Physics Letters, vol. 95, p. 044101, 2009.
[15] S. Moldenhauer, C. Holtmann, T. Stark, and A. Thess, "Theoretical and experimental investigations of the pulse tube engine," Journal of Thermophysics and Heat Transfer, vol. 27, pp. 534-541, 2013.
[16] S. Moldenhauer, A. Thess, C. Holtmann, and C. Fernández-Aballí, "Thermodynamic analysis of a pulse tube engine," Energy Conversion and Management, vol. 65, pp. 810-818, 2013.
[17] 周秉毅, "脈衝管史特靈引擎之設計與理論模式," 成功大學航空太空工程學系碩士學位論文, 2013.
[18] 林憲鴻, "脈衝管史特靈引擎之理論分析與最佳化設計," 成功大學航空太空工程學系碩士學位論文, pp. 1-96, 2014.
[19] R. Webb and M. Scott, "A parametric analysis of the performance of internally finned tubes for heat exchanger application," Journal of Heat Transfer, vol. 102, pp. 38-43, 1980.
[20] 王啟川, "熱交換器設計," 五南出版社有限公司, 2003.
[21] R. Shah and A. London, "Laminar flow forced convection in ducts: a source book for compact heat exchanger analytical data, Supl. 1," Academic Press, New York, 1978.
[22] R. F. Barron, G. Nellis, and J. M. Pfotenhauer, Cryogenic heat transfer: CRC Press, 1999.
[23] J. R. Shewchuk, "An introduction to the conjugate gradient method without the agonizing pain," Carnegie-Mellon University. Department of Computer Science, 1994.
[24] C.-H. Cheng and M.-H. Chang, "A simplified conjugate-gradient method for shape identification based on thermal data," Numerical Heat Transfer: Part B: Fundamentals, vol. 43, pp. 489-507, 2003.