簡易檢索 / 詳目顯示

研究生: 陳權輝
Chen, Quan-Hui
論文名稱: 應用簡易共軛梯度法於脈衝管史特靈引擎之最佳化設計
Optimal Design of a Pulse-Tube Stirling Engine by Simplified Conjugate Gradient Method
指導教授: 鄭金祥
Cheng, Chin-Hsiang
學位類別: 碩士
Master
系所名稱: 工學院 - 航空太空工程學系
Department of Aeronautics & Astronautics
論文出版年: 2015
畢業學年度: 103
語文別: 中文
論文頁數: 94
中文關鍵詞: 脈衝管史特靈引擎簡易共軛梯度權重分析
外文關鍵詞: Pulse- Tube Stirling engine, Simplified conjugate gradient method, Weighting analysis
相關次數: 點閱:68下載:8
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究利用簡易共軛梯度法(Simplified conjugate gradient method, SCGM),探討脈衝管史特靈引擎之性能最佳化,以理論模式進行疊代分析,得設計參數最佳值。並將最佳化後的設計參數,代入理論模式,討論引擎在運轉過程中,溫度、壓力、質量等熱力性質變化,以及針對工作流體在各腔室因流動所造成的壓力降損失。最佳化分析中,除了單一目標函數僅對功率或熱效率進行最佳值搜尋外,本研究亦探討在目標函數中加入多重目標條件,同時針對功率與熱效率兩個目標進行最佳化。此目標函數將以權重分配比例大小進行最佳化疊代,由結果證明此方法確實可以應用於多目標最佳化。另外,在完全以引擎功率為考量,進行最佳化疊代,在六種設計參數收斂於最佳值後,根據此設計參數實際製作出一最佳化原型機。在實驗量測為填充一大氣壓空氣與加熱溫度1000 條件下,量測脈衝管史特靈引擎最大輸出功率,由基準組原型機22.35 W提升至31.83 W,整體性能提升1.42倍。

    In this study, simplified conjugate gradient method is utilized for investigation of optimal performance of a pulse-tube Stirling engine. Design of new parameter is searched for optimization by the theoretical model. The optimal analysis not only searches simple power or thermal efficiency but seeks for both power output and thermal efficiency at the same time in the optimization. Adding the weighting ratio into the objective function, a result for the multi-objective condition can be tested and verified by simplified conjugate gradient method. By combining the thermodynamic model with simplified conjugate gradient method, six geometric parameters are optimized. A prototype engine was revised according to the optimal parameters, and the output of it could be increase from 22.35 W to 31.83 W under the initial pressure of 1 atm and heating temperature of 1000˚C. The toal performance improvement is 42%.

    摘要 ------------------------------------I EXTENDED ABSTRACT --------------------II 誌謝 ------------------------------------IX 目錄 ------------------------------------X 表目錄 ------------------------------------XIV 圖目錄 ------------------------------------XV 符號索引 ------------------- --------XVIII 第一章 前言 1 1.1 研究背景與動機 1 1.2 史特靈引擎發展概要 3 1.3 脈衝管史特靈引擎 4 1.3.1 文獻回顧 4 1.3.2 循環運作原理 5 1.3.3 研究目的及方法 6 1.4 論文架構 6 第二章 理論模式 8 2.1 引擎各參數值 8 2.2 引擎初始條件 12 2.3 熱力模式 14 2.3.1 質量 14 2.3.2 溫度與壓力 16 2.4 壓力降損失 20 2.5 功率與熱效率 23 第三章 最佳化分析 24 3.1 共軛梯度法(CGM) 24 3.2 簡易共軛梯度法(SCGM) 24 3.3 最佳化流程 27 3.4 最佳化權重分析 28 第四章 量測設備 29 4.1 實驗動機 29 4.2 設備 29 4.2.1 加熱量測組 29 4.2.2 扭矩負載控制器與轉速計 30 4.2.3 磁滯煞車器與扭矩計 30 4.2.4 資料擷取器 30 4.3 實驗操作步驟 31 第五章 結果與討論 32 5.1 參數分析 32 5.1.1 不同冷卻器外徑與鰭片長度對功率與熱效率之影響 32 5.1.2 不同加熱器外徑與加熱器鰭片長度、數目對功率與熱效率之影響 33 5.1.3 不同連接管內徑與長度對功率與熱效率之影響 34 5.1.4 不同再生加熱室外徑與再生加熱器質量對功率與熱效率之影響 35 5.2 最佳化參數結果 36 5.2.1 加權係數 37 5.2.2 加權係數 39 5.3 功率最佳化組原型機數值模擬結果 40 5.4 功率與熱效率雙目標最佳化 42 5.4.1 加權係數 42 5.4.2 加權係數 43 5.4.3 加權係數 43 5.5 實驗與理論結果比較 43 5.5.1 功率 43 5.5.2 扭矩 44 第六章 結論 45 參考文獻 47

    [1] 徐天佑、曾鴻陽, "台灣地區有關太陽能日照量之環境時空因素研究探討," 2007.
    [2] S. Taggart, "CSP: Dish projects inch forward," Renewable Energy Focus, vol. 9, pp. 52-54, 2008.
    [3] M. Abbas, B. Boumeddane, N. Said, and A. Chikouche, "Dish Stirling technology: a 100 MW solar power plant using hydrogen for Algeria," International Journal of Hydrogen Eenergy, vol. 36, pp. 4305-4314, 2011.
    [4] C. Cinar, S. Yucesu, T. Topgul, and M. Okur, "Beta-type Stirling engine operating at atmospheric pressure," Applied Energy, vol. 81, pp. 351-357, 2005.
    [5] I. Batmaz and S. Üstün, "Design and manufacturing of a V-type Stirling engine with double heaters," Applied Energy, vol. 85, pp. 1041-1049, 2008.
    [6] C. M. Hargreaves, "The Phillips Stirling engine," Elsevier ,New York, 1991.
    [7] W. E. Gifford and R. Longsworth, "Pulse-tube refrigeration," Journal of Manufacturing Science and Engineering, vol. 86, pp. 264-268, 1964.
    [8] N. C. J. Chen and C.D. West, "A single-cylinder valveless heat engine," in The 22th Intersociety Energy Conversion Engineering Conference, Oak Ridge National Lab., TN,USA, 1987.
    [9] P. L. Tailer, "Thermal lag test engines evaluated and compared to equivalent Stirling engines," American Society of Mechanical Engineers, New York, NY, USA, 1995.
    [10] P. L. Tailer, "External combustion Otto cycle thermal lag engine," in The 28 th Intersociety Energy Conversion Engineering Conference, Atlanta, GA, USA, pp. 943-947, 1993.
    [11] K. Hamaguchi, Y. Ushijima, and Y. Hiratsuka, "Basic characteristics of pulse tube engine," Proceedings of the 12th ISection, pp. 275-84, 2005.
    [12] A. J. Organ, The air engine: Stirling cycle power for a sustainable future: Elsevier, 2007.
    [13] K. Hamaguchi, H. Futagi, T. Yazaki, and Y. Hiratsuka, "Measurement of work generation and improvement in performance of a pulse tube engine," Journal of Power and Energy Systems, vol. 2, pp. 1267-1275, 2008.
    [14] T. Yoshida, T. Yazaki, H. Futaki, K. Hamaguchi, and T. Biwa, "Work flux density measurements in a pulse tube engine," Applied Physics Letters, vol. 95, p. 044101, 2009.
    [15] S. Moldenhauer, C. Holtmann, T. Stark, and A. Thess, "Theoretical and experimental investigations of the pulse tube engine," Journal of Thermophysics and Heat Transfer, vol. 27, pp. 534-541, 2013.
    [16] S. Moldenhauer, A. Thess, C. Holtmann, and C. Fernández-Aballí, "Thermodynamic analysis of a pulse tube engine," Energy Conversion and Management, vol. 65, pp. 810-818, 2013.
    [17] 周秉毅, "脈衝管史特靈引擎之設計與理論模式," 成功大學航空太空工程學系碩士學位論文, 2013.
    [18] 林憲鴻, "脈衝管史特靈引擎之理論分析與最佳化設計," 成功大學航空太空工程學系碩士學位論文, pp. 1-96, 2014.
    [19] R. Webb and M. Scott, "A parametric analysis of the performance of internally finned tubes for heat exchanger application," Journal of Heat Transfer, vol. 102, pp. 38-43, 1980.
    [20] 王啟川, "熱交換器設計," 五南出版社有限公司, 2003.
    [21] R. Shah and A. London, "Laminar flow forced convection in ducts: a source book for compact heat exchanger analytical data, Supl. 1," Academic Press, New York, 1978.
    [22] R. F. Barron, G. Nellis, and J. M. Pfotenhauer, Cryogenic heat transfer: CRC Press, 1999.
    [23] J. R. Shewchuk, "An introduction to the conjugate gradient method without the agonizing pain," Carnegie-Mellon University. Department of Computer Science, 1994.
    [24] C.-H. Cheng and M.-H. Chang, "A simplified conjugate-gradient method for shape identification based on thermal data," Numerical Heat Transfer: Part B: Fundamentals, vol. 43, pp. 489-507, 2003.

    下載圖示 校內:2017-08-21公開
    校外:2017-08-21公開
    QR CODE