| 研究生: |
陳冠皓 Chen, Guan-Hau |
|---|---|
| 論文名稱: |
高性能3D奈米結構堆疊式異質接面(Pd/BaTiO3-CuO/Ag/BaTiO3-CuO/P-Si)二氧化碳(CO2)氣體感測器的研製 Studies of the Pd/ BaTiO3-CuO/ Ag/ BaTiO3-CuO/ P-Si Tandem Heterojunction with 3D Nano Structures for CO2 Gas Sensing Applications |
| 指導教授: |
方炎坤
Fang, Yean-Kuen |
| 學位類別: |
碩士 Master |
| 系所名稱: |
電機資訊學院 - 微電子工程研究所 Institute of Microelectronics |
| 論文出版年: | 2013 |
| 畢業學年度: | 101 |
| 語文別: | 中文 |
| 論文頁數: | 115 |
| 中文關鍵詞: | 二氧化碳 、氣體感測器 、鈦酸鋇-氧化銅 、3D奈米柱狀 、3D奈米尖端 |
| 外文關鍵詞: | Carbon dioxide(CO2), Gas sensor, BaTiO3-CuO, Nano rods, Nano tips |
| 相關次數: | 點閱:106 下載:2 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文探討高性能3D奈米結構堆疊式異質接面(Pd /BaTiO3-CuO /Ag /BaTiO3-CuO /P-Si)二氧化碳(CO2)感測器的研製。吾人利用兩種不同濕式蝕刻方式來完成3D奈米結構:(一)混合硝酸銀及氫氟酸之蝕刻溶液於P型(100)矽基板上成長奈米柱狀結構、(二)混合氫氧化鉀、異丙醇及去離子水之蝕刻溶液於P型(100)矽基板上成長奈米尖端結構。並使用射頻濺鍍系統(RF sputtering system)沉積單層或複層BaTiO3-CuO薄膜作為感測層,以及在複層感測層間沉積不同金屬薄膜(Ag、Au、Cu)。最後再蒸鍍金屬鈀(Pd)及鋁(Al)分別於矽基板最上層及背面作為催化層及金屬接觸層完成Pd/BaTiO3-CuO/P-Si/Al元件製作。
本論文利用AFM、SEM、EDX分別量測薄膜結晶及觀察表面結構和厚度藉以探討BaTiO3-CuO薄膜材料的特性及做最佳製程選擇。元件I-V特性則以HP4145半導體量測分析儀來進行量測。主要探討研究含:有無3D奈米結構的影響及在複層感測層間添加不同金屬(Ag、Au、Cu)之影響。實驗結果發現:使用3D奈米結構及添加不同金屬的感測層可提升靈敏度。前者是因可有效增加感測氣體接觸之面積/體積比,後者則歸致於感測層的阻值降低、提高BaTiO3-CuO化學活性以及增強對CO2的吸附反應。如在奈米尖端結構添加Ag的元件在溫度200℃,逆向偏壓3V及CO2氣體濃度3000ppm條件下,靈敏度可由2D平面的610.53%提升至1141.75%。而添加Ag的奈米柱狀結構者靈敏度更可提升到2017.28%。而感測能力也隨著操作溫度升高而增加。但高到300℃時,會因元件整流特性遭到破壞,導致漏電流急速增加而降低靈敏度。
此外,吾人發現在溫度200℃,濃度3000ppm環境下,反應時間可由一般電阻式元件數分鐘縮短為26秒。也對CO及酒精氣體無明顯反應。
In this thesis, we developed the tandem heterojunction with 3D nano structures for CO2 gas sensing applications. Two different wet etching methods were used to form the 3D nano-structures firstly, i.e., (a) use of the AgNO3 mixed HF solution to form the nano rods on a P (100) Si substrate, and (b) to form the nano tips by etching the P (100) Si substrate with the KOH mixed IPA and DI water solution. Next, sputter a BaTiO3-CuO thin film as the sensing layer and BaTiO3-CuO/ various metals (Ag, Au, and Cu)/ BaTiO3-CuO as single and multi-layer sensing layer on the etched substrate, respectively. Finally, to complete the Pd/BaTiO3-CuO/P-Si/Al devices by evaporate Pd and Al on the top of sensing layer and the bottom of the silicon substrate, respectively. The sensing layers were examined using EDX、AFM and SEM, respectively for crystallinity, surface roughness and morphology, while I-V curves were characterized with HP4145 semiconductor parameter analyzer.
We have focused our studies on:(1) the effect of the 3D nano-structures on sensing performances;(2) the impact of inserting metals (Ag、Au、Cu) between the multi-layer sensing layer on sensing performances. The experimental results found that use of the 3D nano-structures and addition of metal indeed can effectively increase the sensing ability. For example, under the condition of 200℃, -3V and 3000ppm CO2 ambient, the sensor with nanotip structure and Ag added improves sensitivity from 610.53% of the 2D plane and without the metal insertion one to 1141.75%. The improvement even increases up to 2017.28% for the nanorod structure. The reason for the 3D structure is due to the increase of the absorption area, while the addition of metal can reduce BaTiO3-CuO resistance, improving chemical activity and the adsorption of CO2.
In general, the sensitivity of the 3D sensors increases with increasing operating temperature up to 300℃, beyond that, the sensitivity start to reduce for the rapid increase of the leakage current caused by the degradation of the rectifying characteristics of the hetero junction. Besides, the response time is also improved from few minutes of the conventional resistive type to 26 seconds at 200℃, and 3000ppm concentration.
[1]蔡嬪嬪,曾明漢,“氣體感測器之簡介、應用及市場”, 材料與社會,第68期 1992
[2]蔡嬪嬪,曾明漢,“氣體感測器之簡介、應用及市場”, 材料與社會,第150期六月1999
[3]S.C.Chang, “Thin-film semiconductor NOx sensor,” IEEE Transactions on Electron Devices, vol. 26, pp. 1875-1880, 1979.
[4]Suzuki T, Kunihara K, Kobayashi M, Tabata S, Higaki K and Ohnishi H, “A micromachined gas sensor based on a catalytic thick film/SnO2 thin film bilayer and thin film heater - Part 1: CH4 sensing,” Sensors And Actuators B-Chemical, vol. 109, pp. 185-189, 2005.
[5]Liao L, Zhang Z, Yan B , Zheng Z, Bao QL , Wu T , Li CM, Shen ZX, Zhang JX, Gong H, Li JC ,Yu T, “Multifunctional CuO nanowire devices: p-type field effect transistors and CO gas sensors,” Nano Technology, vol. 20, 2009.
[6]勞工安全衛生研究所。2010/03/29
[7]Ghahremaninezhad.A , Asselin.E “Electrodeposition and Growth Mechanism of Copper Sulfide Nanowires,” Journal of Physical Chemistry C, vol. 115, pp. 9320-9334, 2011.
[8]Li LS, Walda J, Manna L, Alivisatos AP. “Semiconductor nanorod liquid crystals,” Nano Letters ,vol. 6, pp. 557-560, 2002.
[9]Peng KQ, Yan YJ, Gao SP, Zhu J, “Synthesis of large-area silicon nanowire arrays via self-assembling nanoelectrochemistry,” Advanced Materials, vol. 14, pp. 1164-1167, 2002.
[10]Peng KQ, Yan YJ, Gao SP, Zhu J, “Dendrite-assisted growth of silicon nanowires in electroless metal deposition,”Advanced Functional Materials, vol. 13, pp. 127-132, 2003.
[11]Peng KQ, Xu Y, Wu Y, Yan YJ, Lee ST, Zhu J, “Aligned single-crystalline Si nanowire arrays for photovoltaic applications,” Small, vol. 1, pp. 1062-1067, 2005.
[12]Peng KQ, Hu JJ, Yan YJ, Wu Y, Fang H, Xu Y, Lee ST, Zhu J, “Fabrication of single-crystalline silicon nanowires by scratching a silicon surface with catalytic metal particles,” Advanced Functional Materials, vol. 16, pp. 387-394, 2006.
[13]Qiu T, Wu XL, Yang X, Huang GS, Zhang ZY, “Self-assembled growth and optical emission of silver-capped silicon nanowires,” Applied Physics Letters, vol. 84, pp. 3867-3869, 2004.
[14]H Seidel, L Csepregi, A Heuberger, and H Baumgartel, “Anisotropic etching of crystalline silicon in alkaline solution-part I. Orientation dependence and behavior of passivation layer,” J Electrochem. Soc, vol. 137, pp. 3612, 1990.
[15]H Seidel, L Csepregi, A Heuberger, and H Baumgartel, “Anisotropic etching of crystalline silicon in alkaline solution-part II. Influence of dopants,” J Electrochem. Soc, vol. 137, pp. 3626, 1990.
[16]江長凌,林煥祐,朱智謙,”半導體製程中高介電(High-K)材料的介紹” 台灣大學化研所
[17]陳銘峰,“熱氧化退火法製備氧化銅半導體奈米線及其性質之研究”,國立中央大學化學工程與材料工程研究所碩士論文,2009
[18]S. M. Sze, “Physics of semiconductor devices”ch5, wiley, New York, 1980.
[19]Neamen, “Semiconductor physics and device” ch9, p336, McGraw-Hill, 1992.
[20]Wen-I Hsu , Shui-Jinn Wang “Fabrication and Characterization of Single-Crystalline Silicon Nanowires Prepared by Metal-Induced Etching,” National Cheng Kung University, 2008.
[21]Q. Micheal and S. Julian, “Aemiconductor Manufacturing Technology”, Prentice Hall, 443.
[22]D. B. Lee, “Anisotropic etching of silicon,” J Appl Phys, vol 40, pp 4569, 1969.
[23]P. J. Hesketh, C. Ju, and S. Gowda “Surface free energy model of silicon anisotropic etching,” J. Electrochem. Soc, vol. 140, pp. 1080, 1993.
[24]T. Baum, and D. J. Schiffrin, “AFM study of surface finish improvement by ultrasound in the anisotropic etching of Si<100> in KOH for micromachining applications,” J. Micromech. Microeng, pp. 338, 1997.
[25]F. Shinoki and A. Itoh, “Mechanism of rf reactive sputtering,”Journal of Applied Physical, vol. 46, pp. 3381, 1975.
[26]王福貞,聞立時,“表面沉積技術”,機械工業出版社,pp.114-204
[27]J. Herr’ana,∗, G. GaMandayoa, N. P’ereza, E. Castanoa, A. Primb, F. Peirob, E.Pellicerb,T. Andreub, A. Cornetb, “On the structural characterization of BaTiO3–CuO as CO2 sensing material,” Sensors and Actuators B, vol 133, pp. 315-320, 2008.
[28]Wen-I Hsu , Shui-Jinn Wang, “Fabrication and Characterization of Single-Crystalline Silicon Nanowires Prepared by Metal-Induced Etching”, National Cheng Kung University, 2008.
[29]Y. M. Fung, W. Y. Cheung, I. H. Wilson, D. Chen, J. B. Xu, S. P. Wong, and R. W. M. Kwok, “Electron field emission characteristics of textured silicon surface,” Papers from the 13th international vacuum microelectronics, Guanhou(China):AVS, pp. 884-887, 2001.
[30]Jaime Herr´an∗, Gemma Garc´ıa Mandayo, Enrique Castano, “Physical behaviour of BaTiO3-CuO thin-film under carbon dioxide atmospheres,” Sensors and Actuators B, vol. 127, pp. 370-375, 2007.
[31]Gemma Garc´ıa Mandayo∗, Fernando Gonz´alez, Isabel Rivas, Isabel Ayerdi, Jaime Herr´an, “BaTiO3-CuO sputtered thin film for carbon dioxide detection,” Sensors and Actuators B, vol. 118, pp. 305-310, 2006.
[32]Tetsuya Kida, Yuji Miyachi, Kengo Shimanoe, Noboru Yamazoe, “NASICON thick film-based CO2 sensor prepared by a sol-gel method”, Sensors and Actuators B, vol. 80, pp. 28-32, 2001.
[33]P.W. Atkins, “Physical Chemistry Fifth edition,” Oxford, pp 877-878, 1994.
[34]王茹立,“不同熱處理與鋇鈦比對鈦酸鋇粉末粒徑大小、結晶相、相轉換溫度及介電常數之影響”,國立成功大學資源工程研究所碩士論文,2009
[35]劉錦淮,張鑒,余增亮,“銀摻染的半導體氧化物二氧化碳感測器研究”中國科學院合肥智能機械研究所 1007-4252(2003)04-0457-04
[36]Tatsumi Ishihara *, Kazuhiro Kometani, Yuichiro Nishi, Yusaku Takita, “Improved sensitivity of CuO-BaTiO3 capacitive-type CO2 sensor by additives,” Sensors and Actuators B, vol. 28, pp. 49-54, 1995.
[37]鄭彥威,“添加銀對碳酸鋇燒結行為微結構及介電性質之影響”,國立台灣大學材料科學與工程學研究所碩士論文,2004
[38]Zheng Jiao1,*, Feng Chen2, Run Su3, Xingjiu Huang3, Wei Liu3 and Jinhuai Liu3, “Study on the Characteristics of Ag Doped CuO-BaTiO3 CO2 Sensors,” Sensors, vol. 2, pp. 366-373, 2002.
[39]Windischmann H, Mark P, “A model for the operation of a thin film SnOx conductance-modulation carbon monoxide sensor,” Journal Of The Electrochemical Society, vol. 126, pp. 627-633, 1979.
[40]Nathaniel J. Quitoriano, Miro Belov, Stephane Evoy, and Theodore I. Kamins, “Single-Crystal, Si Nanotubes, and Their Mechanical Resonant Properties,” Nano Letter, 2009.
[41]Keat G. Ong and Craig A. Grimes*, “A Carbon Nanotube-based Sensor for CO2 Monitoring,” Sensors, vol. 1, pp. 193-205, 2001.
[42]Wang weidong, Qu Yuanfang, “Effect of the CuO as the first time add on electrical properties of BaTiO3 PTC samples without Pb,” Key Laboratory for Advanced Ceramics and Machining Technology of Ministry of Education, Tianjin University, Tianjin (300072).
[43]Gemma García Mandayo, Jaime Herrán, Irene Castro-Hurtado and Enrique Castaño, “Performance of a CO2 Impedimetric Sensor Prototype for Air Quality Monitoring,” Sensors, vol. 11, pp. 5047-5057, 2011.
校內:2018-07-08公開