| 研究生: |
吳宗駿 Wu, Zong-Jyun |
|---|---|
| 論文名稱: |
以多孔片狀氧化鋁粉末製作噴墨印刷相紙之表面塗層 Application of porous flake-alumina powders in fabricating surface layer of Ink-jet photo papers |
| 指導教授: |
顏富士
Yan, Fu-Shih |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 資源工程學系 Department of Resources Engineering |
| 論文出版年: | 2008 |
| 畢業學年度: | 96 |
| 語文別: | 中文 |
| 論文頁數: | 55 |
| 中文關鍵詞: | 氧化鋁 |
| 外文關鍵詞: | Alumina |
| 相關次數: | 點閱:62 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
噴墨印刷(Ink-jet Printing)已為近代數位印刷的主流。其中數位相片亮面用紙(Ink-jet Papers)也已在市面普及化。但因這類紙張之表面塗層(Laminating)其原料取得及製程技術相對複雜,因此市售價格仍居高不下。藉由對價格低廉的Gibbsite熱處理獲得過渡相氧化鋁粉末(NFP-Al2O3),因其粒體呈片狀結構且具備表面多微孔特性,因此極適合作為固定色料的載體,可供作成塗層材料。本研究將其NFP-Al2O3微粒化後作為數位印刷相紙表面塗層材料。
本研究觀察NFP-Al2O3粉末的基本漿料性質及作為噴墨印刷紙張塗層材料的可能性。研究以四種粒徑粉末作為起始漿料,透過pH值調整性質後再加入PVA膠料製成印刷紙張,最後觀察不同條件下作為塗層之功能:
研究結果顯示:
(1) 四種粉體粒徑分佈的漿料在陳化後做為塗布原料,均可製得吸墨性佳的塗層紙,其表面光澤度(Gloss)隨粒徑變細而增加。顯示細化NFP-Al2O3有助於提高塗層紙對光線的反射率。
(2) 小粒徑漿料在相同固含量及膠料添加量下製成的塗層紙,其吸墨性隨著漿料pH值增加而攀升,顯示較高凝聚狀態漿料,對製得的塗層紙吸墨性有顯著的改善。
(3) 塗層紙表面裂縫出現的面積比,隨PVA膠料添加量的增加而減少。PVA添加量達18 wt%時可得到表面緻密無裂縫的相紙。
(4) 以NFP-Al2O3做為塗層原料,當系統製作亮面塗層紙時,漿料之最適條件為:pH值=5.4、固含量:30 wt%、PVA添加量:14 wt%。
Ink-jet Printing has been the main stream of the modern digital printing. And the Ink-Jet Papers has popularized in the market. However, the costs of these papers are too high because the raw materials of the laminating are difficult to be obtained and the fabrication procedures are relatively complicated. The NFP-Al2O3 calcined from low price Gibbsite could become a good candidate for carriers of laminatings in fixing dye and pigment due to the character of the flake structure and the microporous on the surface.
The basic properties of the NFP-Al2O3 slurry and the possibility to be the materials of laminating of Ink-jet printing papers were investigated in this study. Four slurries with different particle sizes were used as starting materials. The ink absorption capacity of the laminating was examined by adjusting the pH and adding PVA in these slurries. The results are as followed:
(1) The coating papers with high ink absorption capacity can be obtained by using the four slurries aging accompanied with different particle size distribution as coating materials. The gloss of papers increases with the reduction of particle sizes. It is showed that ground NFP-Al2O3 can enhance the gloss of laminating.
(2) The Ink absorption capacity of laminating fabricated by the slurry with fine particles at the same solid contain and PVA addition gets higher when the pH value increases. It implies slurries with higher agglomerated state are favorable for Ink absorption capacity of laminating.
(3) The area percentage of crack on laminating decreases as the addition of PVA increases. And the laminating without cracks can be fabricated when the amount of PVA approaches 18 wt%.
(4) To fabricate glossy coating papers using NFP-Al2O3 as raw materials, the most appropriate condition is as followed: pH= 5.4, S.C= 30 wt% and PVA addition= 14 wt%.
1. T. Q. Li, M. Häggkvist, and L. Ödberg, “The porous structure of paper coatings studied by water diffusion measurements,” Colloids and Surfaces, 159, 57-63 (1999).
2. J. H. Johnston, A. J. McFarlane, T. Borrmann, and J. Moraes,
“Nano-structured silicas and silicates––new materials and their applications in paper,” Current Applied Physics, 4, 411-414 (2004).
3.黃啟祥、林江財,陶瓷技術手冊(下),P. 683,中華民國產業科技發展協進會與中華民國粉末冶金協會出版,中華民國83年7月。
4. K. Wefers, “Nomenclature, Preparation, and Properties of Aluminum Oxides, Oxide Hydroxides, and Trihydroxides,” in Alumina Chemicals, L. D. Hart Ed., Am. Ceram. Soc., Ohio (1990).
5. B. Clippens and J. J. Steggerda, “Active Alumina” in Physical and Chemical Aspects of Adsorbents and Catalysts, B. GLinsen Ed., Academic Press, New York, 171 (1970).
6. J. Rouquerol, F. Rouquerol, and M. Ganteaume, “Thermal Decomposition of Gibbsite Under Low Pressures I. Formation of the Boehmitic Phase,” J. Catal., 36, 99 (1975).
7. J. Rouquerol, F. Rouquerol, and M. Ganteaume, “Thermal Decomposition of Gibbsite Under Low Pressures II. Formation of Microporous Alumina,” J. Catal., 57, 222 (1979).
8. K. Wefers and G. M. Bell, Oxides and Hydroxides of Aluminum, Alcoa Research Lab., Technical paper No.19 (1972).
9. J. H. de Boer, J. M. H. Fortuin, and J. J. Steggerda, “The Dehydration of Alumina Hydrates,” Proc. Kon. Ned. Akad. Werensch., Amsterdam, B57, 170 (1954).
10. R. Tertian and D. Papée, “Thermal and Hydrothermal Transformations of Alumina,” J. Chim. Phys., 55, 341 (1958).
11. J. F. Brown, D. Clark, and W. W. Elliott, “Thermal Decomposition of the Alumina Trihydrate, Gibbsite,” J. Chem. Soc. (London), 84 (1953).
12. V. J. Ingram-Jones, R. C. T. Slade, T. W. Davies, J. C. Southern and S. Salvador, “Dehydroxylation sequences of gibbsite and boehmite: study of differences between soak and flash calcinations and of particle-size effects,” J. Mater. Chem., 6 (1), 73-79 (1996).
13. H. C. Stumpf, A. S. Russel, J. W. Newsome, and C. M. Tucker, “Thermal Transformations of Aluminas and Alumina Hydrates,” Ind. Eng. Chem., 42, 1398-1403 (1950).
14. G. W. Brindley and J. O. Choe, “The Reaction Series, Gibbsite→Chi Alumina→Kappa Alumina→Corundum,” The Am. Mineral., 46, 771 (1961).
15. H. Saalfeld, “The Structure of Gibbsite and the Intermediate Products of Its Dehydration,” N. Jb. Miner. Abh., 95, 1-87 (1960).
16. R. Hunter, Introduction to Modern Colloid Science, Oxford Univ. Press, Oxford (1993).
17. 鄭茂提,“改善彩色噴墨印刷紙之研究”,中國文化大學造紙印刷研究
所印刷組,碩士論文,(1998)。
18. 紀培紅、鞠成民,造紙工藝與技術,化學工業出版社出版,北京,(2004)。
19. 嚴美芳,印刷材料與印刷特性,化學工業出版社,北京,(2006)。
20. S. Leelajariyakul, H. Noguchi, and S. Kiatkamjornwong “Surface-modified and micro-encapsulated pigmented inks for ink jet printing on textile fabrics ,” Progress in Organic Coatings, 62 145–161 (2008).
21. http://www.ctk.com.tw/jackweb/graphic/Knowledge/element_color.htm
22. H. C. Stumpf, A. S. Russel, J. W. Newsome, and C. M. Tucker, “Thermal Transformations of Aluminas and Alumina Hydrates,” Ind. Eng. Chem., 42, 1398-1403 (1950).
23. C. J. Papini, W. K. Yoshito D. Gouvea, and R. M. Leal Neto, “Particle size distribution analysis of an alumina powder: Influence of some dispersants, pH and supersonic vibration,” Materials Science Forum, 73-78 498-499 (2005).