| 研究生: |
黃韻茹 Huang, Yun-Ju |
|---|---|
| 論文名稱: |
移動源排放模式之細微粒排放特徵比較分析 Comparison on Fine Particulate Emissions from Mobile Sources by Models |
| 指導教授: |
蔡俊鴻
Tsai, Jiun-Horng |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 環境工程學系 Department of Environmental Engineering |
| 論文出版年: | 2020 |
| 畢業學年度: | 108 |
| 語文別: | 中文 |
| 論文頁數: | 150 |
| 中文關鍵詞: | 移動源排放模式 、MOBILE6.2 、MOVES 、細微粒排放係數 |
| 外文關鍵詞: | Mobile source emission model, MOBILE6.2, MOVES, Fine PM Emission factor |
| 相關次數: | 點閱:64 下載:2 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究以不同移動源排放係數推估模式(MOBILE6.2及MOVES)推估移動源汽油車(二行程機車、四行程機車、自用小客車、營業小客車及小貨車)、柴油車(小客車、小貨車、大貨車、大客車及公車/客運車) 細微粒(PM2.5) 排放係數,分析基準情境及自然成長情境之排放係數變化,比較兩模式差異性;再依排放係數推估結果應用於計算全臺移動源細微粒排放量空間分布,探討各車種排放相對重要性與潛在影響,提供研訂管制減量策略參考。
活動強度研究結果顯示:全臺基準年移動源總活動強度為1.6 × 1011 km/yr,市區道路活動強度( 7.0 × 1010 km/yr)占總活動強度比例最高( 45.4%);各車種活動強度比例最高為自用小客車。柴油大貨車以國道為主要活動路,其他車種主要活動皆於市區道路。
以MOBILE6.2及MOVES推估細微粒排放係數結果顯示,機車排放係數為MOVES係數高於MOBILE6.2係數 (1.3~2.0倍) 。模式推估機車排放係數變化趨勢,從民國105年至120年,高齡機車未呈現明顯劣化現象,與文獻實測值(高車齡車輛或高車行里程具有較高排放係數值)結果不一致,顯示國內目前援用模式未能反應真實排放,應與模式模擬機車排放係數未設定適切劣化曲線有關。MOBILE6.2模擬汽車排放係數不會隨推估年份及期別改變而劣化。MOVES模擬汽車排放係數則呈現隨車齡增加而劣化之趨勢,單一年份內排放係數最大最小值差距隨著年份增加而減少,各期別汽車於不同年份之排放係數亦具劣化趨勢,與實測值結果呈現相同趨勢。研究顯示,MOVES模式推估排放係數隨車齡/累積行駛程之變化趨勢較符合實際排放特徵。
MOBILE6.2及MOVES推估柴油車基準年排放係數變化趨勢亦呈現隨著車齡增加而劣化現象,然而MOBILE6.2推估目標年份排放係數則呈現符合四期標準及以後柴油車不具劣化現象,與實際排放測試結果不符,顯示MOBILE6.2模式應用於微粒未來排放推估需再審慎評估。MOVES模式推估未來年柴油車排放係數呈劣化現象,符合實際排放測試結果趨勢。比較模式推估值與文獻結果,基準年模式推估曲線與EMFAC2017具相似趨勢;排放曲線差距比較結果,MOVES模式之柴油小貨車、柴油大客車、柴油大貨車排放曲線較接近EMFAC模式排放曲線,MOBILE6.2模式柴油小客車、公車/客運車排放曲線與MOVES模式接近,以實測值比較結果,推估值較實測值偏低。由於較新期別排放係數差距不大,高齡車輛劣化影響整體排放趨勢,因此選擇排放係數曲線劣化明顯之模式應較保守。
全臺移動源細微粒排放量推估結果顯示,基準情境排放量依序為:柴油大貨車 > 柴油小貨車 > 二行程機車 > 四行程機車 > 自用小客車;適用較早期排放標準之各車種車輛,細微粒排放相對比例較高,分別佔各該車種排放量50% 以上,應可為移動源細微粒排放減量管制策略之優先評估目標。
This study investigated the applicability of fine particulate matter (FPM) emission factors (EF) derived from mobile emission models (MOBILE and MOVES) to estimate emission from mobile sources, including motorcycles, gasoline vehicles and diesel vehicles. Emission factors from models were compared with tested-data in literatures. Annual emission of FPM from various types of vehicle were calculated by emission factors and vehicle kilometer travel.
The results indicate that EF of motorcycl from MOBIL E6.2 does not present deterioration which could not fit the tend of real data. The EFs of gasoline vehicles from MOBILE6.2 does not present deterioration, either. However, EFs from MOVES deteriodate as vehicle aged which could reflect the trenf in real world. The EFs of diesel vehicles from two models present a deterioration curve. However, real world test data seem higher than modeled EFs.
Estimation of annual PM emission from various vehicles ranked as heavy-duty diesel truck > light-duty diesel truck > 2-stroke motorcycle > 4-stroke motorcycle > light duty passenger vehicle. High mileage and aged vehicles contributed great portion of FPM emissions in Taiwan which should be placed in the priorty list for abatement of FPM emission from mobile sources.
1. Adam, T., Farfaletti, A., Montero, L., Martini, G., Manfredi, U., Larsen, B., . . . Astorga, C. (2010). Chemical Characterization of Emissions from Modern Two-Stroke Mopeds Complying with Legislative Regulation in Europe (EURO-2). Environmental Science & Technology, 44(1), 505-512. doi:10.1021/es9021969
2. Beardsley, M., Warila, J., Dolce, G., & Koupal, J. (2008). Air pollution emissions from highway vehicles: What MOVES tells us.
3. Bielaczyc, P., Woodburn, J., & Szczotka, A. (2016). Exhaust Emissions of Gaseous and Solid Pollutants Measured over the NEDC, FTP-75 and WLTC Chassis Dynamometer Driving Cycles. 1. doi:10.4271/2016-01-1008
4. Bishop, G. A., & Stedman, D. H. (1996). Measuring the Emissions of Passing Cars. Accounts of Chemical Research, 29(10), 489-495. doi:10.1021/ar950240x
5. Brook, R. D., Rajagopalan, S., Pope, C. A., 3rd, Brook, J. R., Bhatnagar, A., Diez-Roux, A. V., . . . Metabolism. (2010). Particulate matter air pollution and cardiovascular disease: An update to the scientific statement from the American Heart Association. Circulation, 121(21), 2331-2378. doi:10.1161/CIR.0b013e3181dbece1
6. Chen, Y., & Borken-Kleefeld, J. (2016). NOx Emissions from Diesel Passenger Cars Worsen with Age. Environ Sci Technol, 50(7), 3327-3332. doi:10.1021/acs.est.5b04704
7. Cheung, K. L., Ntziachristos, L., Tzamkiozis, T., Schauer, J. J., Samaras, Z., Moore, K. F., & Sioutas, C. (2010). Emissions of Particulate Trace Elements, Metals and Organic Species from Gasoline, Diesel, and Biodiesel Passenger Vehicles and Their Relation to Oxidative Potential. Aerosol Science and Technology, 44(7), 500-513. doi:10.1080/02786821003758294
8. Chiang, H.-L., Lai, Y.-M., & Chang, S.-Y. (2012). Pollutant constituents of exhaust emitted from light-duty diesel vehicles. Atmospheric Environment, 47, 399-406. doi:10.1016/j.atmosenv.2011.10.045
9. Choi, D., Beardsley, M., Brzezinski, D., Koupal, J., & Warila, J. (2010). MOVES Sensitivity Analysis : The Impacts of Temperature and Humidity on Emissions. Retrieved from 19th Annual International Emission Inventory Conference, Ann Arbor, MI:
10. Claggett, M. (2010). Implications of the moves2010 model on mobile source emission estimates. EM: Air and Waste Management Association's Magazine for Environmental Managers(JULY), 10-15. Retrieved from https://www.scopus.com/inward/record.uri?eid=2-s2.0-77956232872&partnerID=40&md5=90e5952207cbd8efd132beaba7eaa1d7
11. Cohen, A. J., Brauer, M., Burnett, R., Anderson, H. R., Frostad, J., Estep, K., . . . Forouzanfar, M. H. (2017). Estimates and 25-year trends of the global burden of disease attributable to ambient air pollution: an analysis of data from the Global Burden of Diseases Study 2015. The Lancet, 389(10082), 1907-1918. doi:10.1016/s0140-6736(17)30505-6
12. Czerwinski, J., Comte, P., Larsen, B., Martini, G., & Mayer, A. (2006). Research on particle emissions of modern 2-stroke scooters. SAE Technical Papers. doi:10.4271/2006-01-1078
13. Czerwinski, J., Comte, P., Napoli, S., & Wili, P. (2002). Summer cold start and nanoparticulates of small scooters. SAE Technical Papers. doi:10.4271/2002-01-1096
14. ERG. (2018). Clark County On-road Vehicle Classification Study Final Report.
15. Feng, S., Gao, D., Liao, F., Zhou, F., & Wang, X. (2016). The health effects of ambient PM2.5 and potential mechanisms. Ecotoxicol Environ Saf, 128, 67-74. doi:10.1016/j.ecoenv.2016.01.030
16. Franco, V., Kousoulidou, M., Muntean, M., Ntziachristos, L., Hausberger, S., & Dilara, P. (2013). Road vehicle emission factors development: A review. Atmospheric Environment, 70, 84-97. doi:10.1016/j.atmosenv.2013.01.006
17. Giechaskiel, B., Joshi, A., Ntziachristos, L., & Dilara, P. (2019). European Regulatory Framework and Particulate Matter Emissions of Gasoline Light-Duty Vehicles: A Review. Catalysts, 9(7). doi:10.3390/catal9070586
18. Giechaskiel, B., Zardini, A. A., Lähde, T., Perujo, A., Kontses, A., & Ntziachristos, L. (2019). Particulate Emissions of Euro 4 Motorcycles and Sampling Considerations. Atmosphere, 10(7). doi:10.3390/atmos10070421
19. Grigoratos, T., Fontaras, G., Giechaskiel, B., & Zacharof, N. (2019). Real world emissions performance of heavy-duty Euro VI diesel vehicles. Atmospheric Environment, 201, 348-359. doi:10.1016/j.atmosenv.2018.12.042
20. Guo, D., Wang, Z.-g., Sun, L., Li, K., Wang, J., Sun, F., & Zhang, H. (2018). Study on Gasoline Vehicle Emission Inventory Considering Regional Differences in China. Journal of Advanced Transportation, 2018, 7497354. doi:10.1155/2018/7497354
21. Hamanaka, R. B., & Mutlu, G. M. (2018). Particulate Matter Air Pollution: Effects on the Cardiovascular System. Front Endocrinol (Lausanne), 9, 680. doi:10.3389/fendo.2018.00680
22. Huang, C., Lou, D., Hu, Z., Feng, Q., Chen, Y., Chen, C., . . . Yao, D. (2013). A PEMS study of the emissions of gaseous pollutants and ultrafine particles from gasoline- and diesel-fueled vehicles. Atmospheric Environment, 77, 703-710. doi:10.1016/j.atmosenv.2013.05.059
23. Huang, C., Tao, S., Lou, S., Hu, Q., Wang, H., Wang, Q., . . . Zhou, L. (2017). Evaluation of emission factors for light-duty gasoline vehicles based on chassis dynamometer and tunnel studies in Shanghai, China. Atmospheric Environment, 169, 193-203. doi:10.1016/j.atmosenv.2017.09.020
24. Jaworski, A., Kuszewski, H., Ustrzycki, A., Balawender, K., Lejda, K., & Wos, P. (2018). Analysis of the repeatability of the exhaust pollutants emission research results for cold and hot starts under controlled driving cycle conditions. Environ Sci Pollut Res Int, 25(18), 17862-17877. doi:10.1007/s11356-018-1983-5
25. Karavalakis, G., Durbin, T. D., Yang, J., Ventura, L., & Xu, K. (2018). Fuel Effects on PM Emissions from Different Vehicle/Engine Configurations: A Literature Review. 1. doi:10.4271/2018-01-0349
26. Khalek, I., Bougher, T. and Jetter, J. . (2010). Particle Emissions from a 2009 Gasoline Direct Injection Engine Using Different Commercially Available Fuels. SAE Technical Paper, 2010-01-2117.
27. Kim, H. J., Lee, J. T., Lim, Y., Keel, J., Hong, Y., & Roh, H. G. (2019). A Comparison on Emission Characteristics between Passenger Car Using Gasoline (Including HEV) and Diesel Fuel according to the Various Test Mode. 1. doi:10.4271/2019-01-1408
28. Kim, J., Choi, K., Myung, C.-L., Lee, Y., & Park, S. (2013). Comparative investigation of regulated emissions and nano-particle characteristics of light duty vehicles using various fuels for the FTP-75 and the NEDC mode. Fuel, 106, 335-343. doi:10.1016/j.fuel.2012.12.047
29. Kim Oanh, N. T., Thiansathit, W., Bond, T. C., Subramanian, R., Winijkul, E., & Paw-armart, I. (2010). Compositional characterization of PM2.5 emitted from in-use diesel vehicles. Atmospheric Environment, 44(1), 15-22. doi:10.1016/j.atmosenv.2009.10.005
30. Kim, Y., Kim, Y., Kang, J., Jun, S., Rew, S., Lee, D., & Park, S. (2013). Fuel Effect on Particle Emissions of a Direct Injection Engine. https://doi.org/10.4271/2013-01-1559
31. Koupal, J., Beardsley, M., Brzezinski, D., Warila, J., & Faler, W. (2010). U.S. EPA’s MOVES2010 vehicle emission model: overview and considerations for international application.
32. Liu, X. (2015). A more accurate method using MOVES (Motor Vehicle Emission Simulator) to estimate emission burden for regional-level analysis. J Air Waste Manag Assoc, 65(7), 837-843. doi:10.1080/10962247.2015.1025150
33. Loomis, D., Grosse, Y., Lauby-Secretan, B., Ghissassi, F. E., Bouvard, V., Benbrahim-Tallaa, L., . . . Straif, K. (2013). The carcinogenicity of outdoor air pollution. The Lancet Oncology, 14(13), 1262-1263. doi:10.1016/s1470-2045(13)70487-x
34. Park, G., Mun, S., Hong, H., Chung, T., Jung, S., Kim, S., . . . Lee, T. (2019). Characterization of Emission Factors Concerning Gasoline, LPG, and Diesel Vehicles via Transient Chassis-Dynamometer Tests. Applied Sciences, 9(8), 1573. doi:10.3390/app9081573
35. Perugu, H. (2019). Emission modelling of light-duty vehicles in India using the revamped VSP-based MOVES model: The case study of Hyderabad. Transportation Research Part D: Transport and Environment, 68, 150-163. doi:10.1016/j.trd.2018.01.031
36. S. Vallamsundar, J. L. (2011). Overview of U.S. EPA new generation emission model: MOVES. ACEEE Int. J. Transp. Urban Dev., 1, pp. 39-43. doi:01.IJTUD.01.01.34
37. USEPA. (2003a). MOBILE6.1 Particulate Emission Factor Model Technical Description. (EPA420-R-03-001).
38. USEPA. (2003b). User’s Guide to MOBILE6.1 and MOBILE6.2: Mobile Source Emission Factor Model. (EPA420-R-03-010).
39. USEPA. (2009). Development of Emissions Rates for Heavy-Duty Vehicles in the Motor Vehicle Emissions Simulator. (EPA-420-P-09-005).
40. USEPA. (2015). MOVES2014a User Guide. (EPA-420-B-15-095).
41. USEPA. (2018a). MOVES2014, MOVES2014a, and MOVES2014b Technical Guidance : Using MOVES to Prepare Emission Inventories for State Implementation Plans and Transportation Conformity. (EPA-420-B-18-039).
42. USEPA. (2018b). Speciation of Total Organic Gas and Particulate Matter Emissions from On-road Vehicles in MOVES2014b. (EPA-420-R-18-012).
43. Wang, C. (2013). Evaluation of data inputs and sensitivity analysis of the MOVES mobile emission inventory model. (Ph.D.). University of Delaware, Ann Arbor. ProQuest Dissertations & Theses A&I; ProQuest Dissertations & Theses Global database. (3613079)
44. Wei, Q., Akard, M., Porter, S., & Nakamura, H. (2009). The Effect of Drive Cycles on PM Emission Characteristics from a Gasoline Vehicle. https://doi.org/10.4271/2009-01-1119
45. Wu, B., Shen, X., Cao, X., Yao, Z., & Wu, Y. (2016). Characterization of the chemical composition of PM2.5 emitted from on-road China III and China IV diesel trucks in Beijing, China. Sci Total Environ, 551-552, 579-589. doi:10.1016/j.scitotenv.2016.02.048
46. Xing, Y. F., Xu, Y. H., Shi, M. H., & Lian, Y. X. (2016). The impact of PM2.5 on the human respiratory system. J Thorac Dis, 8(1), E69-74. doi:10.3978/j.issn.2072-1439.2016.01.19
47. Yang, H.-H., Dhital, N. B., Wang, L.-C., Hsieh, Y.-S., Lee, K.-T., Hsu, Y.-T., & Huang, S.-C. (2019). Chemical Characterization of Fine Particulate Matter in Gasoline and Diesel Vehicle Exhaust. Aerosol and Air Quality Research, 19(6), 1439-1449. doi:10.4209/aaqr.2019.04.0191
48. Zavala, M., Barrera, H., Morante, J., & Molina, L. T. (2013). Analysis of model-based PM2.5 emission factors for on-road mobile sources in Mexico. Atmósfera, 26(1), 109-124. doi:10.1016/S0187-6236(13)71065-8
49. Zhang, Q., Fan, J., Yang, W., Ying, F., Bao, Z., Sheng, Y., . . . Chen, X. (2018). Influences of accumulated mileage and technological changes on emissions of regulated pollutants from gasoline passenger vehicles. J Environ Sci (China), 71, 197-206. doi:10.1016/j.jes.2018.03.021
50. Zhu, R., Hu, J., Bao, X., He, L., Lai, Y., Zu, L., . . . Su, S. (2016). Tailpipe emissions from gasoline direct injection (GDI) and port fuel injection (PFI) vehicles at both low and high ambient temperatures. Environ Pollut, 216, 223-234. doi:10.1016/j.envpol.2016.05.066
51. 石育岑. (2004). 柴油車排煙檢測成效分析與污染排放量推估. (碩士). 國立中興大學, 台中市. Retrieved from https://hdl.handle.net/11296/amg22k
52. 行政院環境保護署. (2017a). 移動污染源排放總量推估及管制專案工作計畫.
53. 行政院環境保護署. (2017b). 臺灣地區車輛生命週期評估. (EPA-105-FA13-03 -A257).
54. 行政院環境保護署. (2019). 臺灣空氣污染排放量[TEDS10]線源─排放量推估手冊.
55. 財團法人車輛研究測試中心. (2004a). 行車型態對車輛污染測試結果之相關性分析. Retrieved from 車輛研測資訊:
56. 財團法人車輛研究測試中心. (2004b). 重型柴油引擎污染測試程序分析. Retrieved from 車輛研測資訊:
57. 高欣韋. (2003). 中部地區柴油車粒狀污染物排放之推估與探討. (碩士). 國立中興大學, 台中市. Retrieved from https://hdl.handle.net/11296/zv6d47
58. 張庭嘉. (2006). 機車與柴油車的汙染排放總量推估模式建立. (碩士). 國立中興大學, 台中市. Retrieved from https://hdl.handle.net/11296/gya9uh
59. 陳彥佑. (2017). 臺灣汽油車輛排放有害空氣污染物特徵與推估不確定因素研究. (碩士). 國立成功大學, 台南市. Retrieved from https://hdl.handle.net/11296/c43y26
60. 黃欣怡. (2012). 台灣地區機車排放空氣污染量推估方法暨關聯參數影響程度研究. (碩士). 國立成功大學, 台南市. Retrieved from https://hdl.handle.net/11296/jdc8b5
61. 溫蓓章, 胡以琴, 陳柏君, 張瓊文, & 楊幼文. (2012). 新一代運輸部門能源消耗與排放推估模式之建構與發展趨勢:美國MOVES模式與我國相關研究之對比探討. [Development and Future Perspectives of the Next Generation Models for Energy Consumption and Emissions of the Transportation Sector: A Comparative Study of MOVES and Taiwan Research]. 運輸學刊, 24(3), 277-303. doi:10.6383/jcit.201209.0277
62. 劉修誠. (2018). 都會區移動源有害空氣污染特性與管制對策有效性研究. (碩士). 國立成功大學, 台南市. Retrieved from https://hdl.handle.net/11296/b35c2z