| 研究生: |
林耿弘 Lin, Keng-Hung |
|---|---|
| 論文名稱: |
橙黃壺菌BL10的脂肪代謝之基因體學及轉錄體學特徵分析 Genomic and Transcriptomic Characteristics of Fatty Acid Metabolism in Aurantiochytrium limacinum BL10 |
| 指導教授: |
劉宗霖
Liu, Tsung-Lin |
| 學位類別: |
碩士 Master |
| 系所名稱: |
生物科學與科技學院 - 生物科技與產業科學系 Department of Biotechnology and Bioindustry Sciences |
| 論文出版年: | 2023 |
| 畢業學年度: | 111 |
| 語文別: | 英文 |
| 論文頁數: | 56 |
| 中文關鍵詞: | Aurantiochytrium limacinum BL10 、DHA 、基因註釋 、功能註釋 、比較基因體分析 、轉錄體分析 、脂肪酸代謝 、活性氧自由基 |
| 外文關鍵詞: | Aurantiochytrium limacium BL10, docosahexaenoic Acid (DHA), gene annotation, functional annotation, comparative genomics analysis, differential expression gene analysis, fatty acid metabolism, ROS response |
| 相關次數: | 點閱:102 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
橙黃壺菌Aurantiochytrium limacinum BL10 是一種在台灣北部河口發現的單細胞真核微藻。其能夠產生大量的多元不飽和脂肪酸,尤其是DHA,使其極具商業價值。相比其他同樣具產油能力的微藻,BL10產油的能力更高,並且有耐高糖且耐低鹽度的特性,使其成為商業上生產藻油的有利競爭者。為了更了解 BL10 產生 DHA 的機制與優勢,本研究採用比較基因體學與轉錄體學的分析方法來找出BL10基因體與轉錄體的特徵。由於BL10是全新物種,對於基因與功能的註釋尚不清楚,故本研究第一步進行BL10的基因預測,並註釋功能。得到完整的註釋結果後,我們將同樣具產油能力的微藻與BL10進行比較基因體分析。我們發現limacinum 物種在攝取葡萄糖,產生acetyl-CoA以及對抗氧化壓力等相關基因具有更高的拷貝數,可解釋limacinum 物種有更加優秀的累積DHA能力。此外我們分析了BL10在快速生長期(10小時)與油脂累積期(30小時)基因表現量差異,並找到與DHA累積的相關基因。我們發現與高拷貝數基因相關的代謝途徑皆在30小時高表達,例如糖解反應、脂肪酸合成與抵抗活性氧反應。綜合以上分析,代表BL10製作與保護DHA的方式更有效率。本研究探討了BL10累積DHA優勢的分子機制,並為未來提升DHA產量的基因調控提供了可靠的研究方向。
Aurantiochytrium limacinum BL10 is a single-celled eukaryotic microalga found in the estuaries of northern Taiwan. It can produce large amounts of polyunsaturated fatty acids, particularly docosahexaenoic acid (DHA), making it highly valuable commercially. Compared to other oleaginous microalgal, the DHA-producing ability of BL10 is outstanding. Moreover, the ability of enduring high glucose level and low salt culture conditions makes BL10 become a favorable competitor in commercial microbial oil production. To further understand the mechanism and advantages of DHA production in BL10, we used comparative genomics and transcriptomics analysis to identify the genomic and transcriptomic features of BL10. Although the assemble genome of BL10 is available, the annotation of gene structure and function are still unclear nowadays. Therefore, the first step of this study was to predict and annotate the genes of BL10. After obtaining complete genome annotations, we applied a comparative genomic analysis between other oleaginous microalgal species and BL10. We found that limacinum strains has a higher copy number of genes related to glucose uptake, acetyl-CoA production, and repress oxidative stress, which may explain their superior ability to accumulate DHA. In addition, we analyzed the differences gene expression level between the cell division stage (10 hrs) and the oil accumulation stage (30 hrs) of BL10 and identified genes related to DHA accumulation. We found that metabolic pathways related to high copy number genes were highly expressed at 30 hours, such as glycolysis, fatty acid synthesis, and resistance to reactive oxygen species (ROS) response. Overall, this study explored the molecular mechanism behind advantages of BL10 in DHA accumulation and provided a reliable research direction of improving DHA production via gene regulation.
Aasen, I.M., Ertesvåg, H., Heggeset, T.M.B., Liu, B., Brautaset, T., Vadstein, O., and Ellingsen, T.E. Thraustochytrids as production organisms for docosahexaenoic acid (DHA), squalene, and carotenoids. Applied Microbiology and Biotechnology 100, 4309-4321, 2016.
Ahn, S., Jung, J., Jang, I.-A., Madsen, E.L., and Park, W. Role of glyoxylate shunt in oxidative stress response. Journal of Biological Chemistry 291, 11928-11938, 2016.
Ashburner, M., Ball, C.A., Blake, J.A., Botstein, D., Butler, H., Cherry, J.M., Davis, A.P., Dolinski, K., Dwight, S.S., and Eppig, J.T. Gene ontology: tool for the unification of biology. Nature Genetics 25, 25-29, 2000.
Blum, M., Chang, H.-Y., Chuguransky, S., Grego, T., Kandasaamy, S., Mitchell, A., Nuka, G., Paysan-Lafosse, T., Qureshi, M., and Raj, S. The InterPro protein families and domains database: 20 years on. Nucleic Acids Research 49, D344-D354, 2021.
Chaung, K.-C., Chu, C.-Y., Su, Y.-M., and Chen, Y.-M. Effect of culture conditions on growth, lipid content, and fatty acid composition of Aurantiochytrium mangrovei strain BL10. AMB Express 2, 1-11, 2012.
Chi, G., Xu, Y., Cao, X., Li, Z., Cao, M., Chisti, Y., and He, N. Production of polyunsaturated fatty acids by Schizochytrium (Aurantiochytrium) spp. Biotechnology Advances 55, 107897, 2022.
Conesa, A., Götz, S., García-Gómez, J.M., Terol, J., Talón, M., and Robles, M. Blast2GO: a universal tool for annotation, visualization and analysis in functional genomics research. Bioinformatics 21, 3674-3676, 2005.
Danecek, P., Bonfield, J.K., Liddle, J., Marshall, J., Ohan, V., Pollard, M.O., Whitwham, A., Keane, T., McCarthy, S.A., and Davies, R.M. Twelve years of SAMtools and BCFtools. Gigascience 10, giab008, 2021.
Dellero, Y., Cagnac, O., Rose, S., Seddiki, K., Cussac, M., Morabito, C., Lupette, J., Cigliano, R.A., Sanseverino, W., and Kuntz, M. Proposal of a new thraustochytrid genus Hondaea gen. nov. and comparison of its lipid dynamics with the closely related pseudo-cryptic genus Aurantiochytrium. Algal research 35, 125-141, 2018.
Ejigu, G.F., and Jung, J. Review on the Computational Genome Annotation of Sequences Obtained by Next-Generation Sequencing. Biology (Basel) 9, 2020.
Emms, D.M., and Kelly, S. OrthoFinder: phylogenetic orthology inference for comparative genomics. Genome biology 20, 1-14, 2019.
Götz, S., García-Gómez, J.M., Terol, J., Williams, T.D., Nagaraj, S.H., Nueda, M.J., Robles, M., Talón, M., Dopazo, J., and Conesa, A. High-throughput functional annotation and data mining with the Blast2GO suite. Nucleic Acids Research 36, 3420-3435, 2008.
Han, M.V., Thomas, G.W., Lugo-Martinez, J., and Hahn, M.W. Estimating gene gain and loss rates in the presence of error in genome assembly and annotation using CAFE 3. Molecular Biology and Evolution 30, 1987-1997, 2013.
Heggeset, T.M., Ertesvåg, H., Liu, B., Ellingsen, T.E., Vadstein, O., and Aasen, I.M. Lipid and DHA-production in Aurantiochytrium sp.–responses to nitrogen starvation and oxygen limitation revealed by analyses of production kinetics and global transcriptomes. Scientific Reports 9, 19470, 2019.
Hoff, K.J., Lange, S., Lomsadze, A., Borodovsky, M., and Stanke, M. BRAKER1: unsupervised RNA-Seq-based genome annotation with GeneMark-ET and AUGUSTUS. Bioinformatics 32, 767-769, 2016.
Hu, F., Clevenger, A.L., Zheng, P., Huang, Q., and Wang, Z. Low-temperature effects on docosahexaenoic acid biosynthesis in Schizochytrium sp. TIO01 and its proposed underlying mechanism. Biotechnology for biofuels 13, 1-14, 2020.
Huerta-Cepas, J., Szklarczyk, D., Heller, D., Hernández-Plaza, A., Forslund, S.K., Cook, H., Mende, D.R., Letunic, I., Rattei, T., and Jensen, L.J. eggNOG 5.0: a hierarchical, functionally and phylogenetically annotated orthology resource based on 5090 organisms and 2502 viruses. Nucleic Acids Research 47, D309-D314, 2019.
Jain, C., Rodriguez-R, L.M., Phillippy, A.M., Konstantinidis, K.T., and Aluru, S. High throughput ANI analysis of 90K prokaryotic genomes reveals clear species boundaries. Nature communications 9, 5114, 2018.
Kanehisa, M., and Goto, S. KEGG: kyoto encyclopedia of genes and genomes. Nucleic Acids Research 28, 27-30, 2000.
Kasukawa, T., Furuno, M., Nikaido, I., Bono, H., Hume, D.A., Bult, C., Hill, D.P., Baldarelli, R., Gough, J., and Kanapin, A. Development and evaluation of an automated annotation pipeline and cDNA annotation system. Genome Research 13, 1542-1551, 2003.
Kim, D., Paggi, J.M., Park, C., Bennett, C., and Salzberg, S.L. Graph-based genome alignment and genotyping with HISAT2 and HISAT-genotype. Nature Biotechnology 37, 907-915, 2019.
Lan, C., Wang, S., Zhang, H., Wang, Z., Wan, W., Liu, H., Hu, Y., Cui, Q., and Song, X. Cocktail biosynthesis of triacylglycerol by rational modulation of diacylglycerol acyltransferases in industrial oleaginous Aurantiochytrium. Biotechnology for Biofuels 14, 1-10, 2021.
Lin, H., Yu, M., Wang, X., and Zhang, X.-H. Comparative genomic analysis reveals the evolution and environmental adaptation strategies of vibrios. Biomed Central Genomics 19, 1-14, 2018.
Liu, X., Cooper, D.E., Cluntun, A.A., Warmoes, M.O., Zhao, S., Reid, M.A., Liu, J., Lund, P.J., Lopes, M., and Garcia, B.A. Acetate production from glucose and coupling to mitochondrial metabolism in mammals. Cell 175, 502-513. e513, 2018.
Müller, A., MacCallum, R.M., and Sternberg, M.J. Benchmarking PSI-BLAST in genome annotation. Journal of Molecular Biology 293, 1257-1271, 1999.
Mardis, E.R. The impact of next-generation sequencing technology on genetics. Trends in Genetics 24, 133-141, 2008.
Mercer, P., and Armenta, R.E. Developments in oil extraction from microalgae. European journal of lipid science and technology 113, 539-547, 2011.
Muskiet, F.A., Fokkema, M.R., Schaafsma, A., Boersma, E.R., and Crawford, M.A. Is docosahexaenoic acid (DHA) essential? Lessons from DHA status regulation, our ancient diet, epidemiology and randomized controlled trials. The journal of Nutrition 134, 183-186, 2004.
Nazir, Y., Phabakaran, P., Halim, H., Mohamed, H., Naz, T., Abdul Hamid, A., and Song, Y. Strategic Development of Aurantiochytrium sp. Mutants With Superior Oxidative Stress Tolerance and Glucose-6-Phosphate Dehydrogenase Activity for Enhanced DHA Production Through Plasma Mutagenesis Coupled With Chemical Screening. Frontiers in Nutrition 9, 876649, 2022.
Perez, C.M.T., Watanabe, K., Okamura, Y., Nakashimada, Y., and Aki, T. Metabolite profile analysis of Aurantiochytrium limacinum SR21 grown on acetate-based medium for lipid fermentation. Journal of Oleo Science 68, 541-549, 2019.
Pertea, M., Pertea, G.M., Antonescu, C.M., Chang, T.-C., Mendell, J.T., and Salzberg, S.L. StringTie enables improved reconstruction of a transcriptome from RNA-seq reads. Nature Biotechnology 33, 290-295, 2015.
Reuter, J.A., Spacek, D.V., and Snyder, M.P. High-throughput sequencing technologies. Molecular Cell 58, 586-597, 2015.
Shao, X., Lv, N., Liao, J., Long, J., Xue, R., Ai, N., Xu, D., and Fan, X. Copy number variation is highly correlated with differential gene expression: a pan-cancer study. Biomed Central Genomics medical genetics 20, 1-14, 2019.
Simão, F.A., Waterhouse, R.M., Ioannidis, P., Kriventseva, E.V., and Zdobnov, E.M. BUSCO: assessing genome assembly and annotation completeness with single-copy orthologs. Bioinformatics 31, 3210-3212, 2015.
Simopoulos, A.P. Essential fatty acids in health and chronic disease. The American journal of clinical nutrition 70, 560s-569s, 1999.
Sivashankari, S., and Shanmughavel, P. Comparative genomics-a perspective. Bioinformation 1, 376, 2007.
Stanke, M., Keller, O., Gunduz, I., Hayes, A., Waack, S., and Morgenstern, B. AUGUSTUS: ab initio prediction of alternative transcripts. Nucleic Acids Research 34, W435-W439, 2006.
Tamura, K., Stecher, G., and Kumar, S. MEGA11: molecular evolutionary genetics analysis version 11. Molecular Biology and Evolution 38, 3022-3027, 2021.
Tarazona, S., Furió-Tarí, P., Turrà, D., Pietro, A.D., Nueda, M.J., Ferrer, A., and Conesa, A. Data quality aware analysis of differential expression in RNA-seq with NOISeq R/Bioc package. Nucleic Acids Research 43, e140-e140, 2015.
Tarazona, S., García-Alcalde, F., Dopazo, J., Ferrer, A., and Conesa, A. Differential expression in RNA-seq: a matter of depth. Genome Research 21, 2213-2223, 2011.
Valle, A., Oliver, J., and Roca, P. Role of uncoupling proteins in cancer. Cancers 2, 567-591, 2010.
Vittori, A., Breda, C., Repici, M., Orth, M., Roos, R.A., Outeiro, T.F., Giorgini, F., Hollox, E.J., and Network, R.i.o.t.E.H.s.D. Copy-number variation of the neuronal glucose transporter gene SLC2A3 and age of onset in Huntington's disease. Human Molecular Genetics 23, 3129-3137, 2014.
Wang, G., Oh, D.-H., and Dassanayake, M. GOMCL: a toolkit to cluster, evaluate, and extract non-redundant associations of Gene Ontology-based functions. Biomed Central Genomics Bioinformatics 21, 1-9, 2020.
Wang, Y., Chen, L., Song, N., and Lei, X. GASS: genome structural annotation for Eukaryotes based on species similarity. Biomed Central Genomics 16, 1-14, 2015.
Yang, H.-L., Lu, C.-K., Chen, S.-F., Chen, Y.-M., and Chen, Y.-M. Isolation and characterization of Taiwanese heterotrophic microalgae: screening of strains for docosahexaenoic acid (DHA) production. Marine Biotechnology 12, 173-185, 2010.
Yang, P., Liu, W., Chen, Y., and Gong, A.-D. Engineering the glyoxylate cycle for chemical bioproduction. Frontiers in Bioengineering and Biotechnology 10, 1066651, 2022.
Zhang, T.-T., Xu, J., Wang, Y.-M., and Xue, C.-H. Health benefits of dietary marine DHA/EPA-enriched glycerophospholipids. Progress in lipid research 75, 100997, 2019.
Zhao, X., Dauenpen, M., Qu, C., and Qiu, X. Genomic analysis of genes involved in the biosynthesis of very long chain polyunsaturated fatty acids in Thraustochytrium sp. 26185. Lipids 51, 1065-1075, 2016.
邱聖博,橙黃壺菌 BL10 之全基因體及轉錄體的探討,國立成功大學生物科技與產業科學系碩士論文,2021。