| 研究生: |
洪忠欽 Hong, Jhong-Cin |
|---|---|
| 論文名稱: |
以基因演算法萃取太陽能電池特性參數並應用於非晶矽薄膜太陽能電池 Extract Solar Cell Parameters by Using Genetic Algorithm and Apply to Amorphous Silicon Thin Film Solar Cell |
| 指導教授: |
洪茂峰
Hong, Mau-Phon |
| 學位類別: |
碩士 Master |
| 系所名稱: |
電機資訊學院 - 微電子工程研究所 Institute of Microelectronics |
| 論文出版年: | 2012 |
| 畢業學年度: | 100 |
| 語文別: | 中文 |
| 論文頁數: | 100 |
| 中文關鍵詞: | 太陽能電池 、基因演算法 、串聯電阻 、並聯電阻 、非晶矽 |
| 外文關鍵詞: | solar cell, Genetic Algorithm, series resistance, shunt resistance, Single Diode Model, amorphous silicon |
| 相關次數: | 點閱:68 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
一般針對太陽能電池之特性分析,大多著重在開路電壓、短路電流、填充因子及效率這四項基本特性的量測,相對之下較少研究針對IV 曲線做進一步探討。在本研究中,我們建立一套由太陽能電池IV曲線萃取特性參數之程式架構,分析的參數有光電流、飽和電流、串聯電阻、並聯電阻(導)以及理想因子,目的是希望藉由萃取以上參數,協助我們分析製程與結構尚可改進之處。此程式以套裝軟體MATLAB 2008 進行開發,使用基因演算法為求解架構,核心概念為太陽能電池Single Diode Model,萃取精確度以原始曲線與擬合曲線之間的Standard Deviation 為依據。以此程式萃取模擬曲線與實際量測曲線,原始曲線與擬合曲線之誤差小於3%,代表萃取結果相當接近正確值。最後應用於非晶系薄膜太陽能電池特性之探討與改善,藉由wxAMPS-1D 模擬與基因演算法萃取後證明在AZO 與p-a-SiC:H 之間插入一層p-uC-Si:H 後可改善接面特性並降低串聯電,最佳厚度7nm,與實際製程結果相近。
Usually, we identify solar cell characteristics by measuring four basic parameters - open circuit voltage、short circuit current、fill factor and efficiency, but seldom we analyze the IV curve. Actually we can get some useful details from IV curve to know how to improve structure or fabrication process of solar cells. In our dissertation, we developed a program which can extract solar cell parameters including photocurrent, saturation current, series resistance, shunt resistance (conductance) and ideal factor. The program was developed by MATLAB 2008, and we used Genetic Algorithm as a solution, incorporated with solar cell equivalent circuit Single Diode Model. Besides, we used standard deviation between original curve and fitted cure as criterion to estimate accuracy. After testing, the program could extract parameters with the standard deviation below 3%, this indicated that our program can function work well and
have good extraction. Finally, we connected the program with wxAMPS-1D, and applied to amorphous silicon solar cells TCO/p contact. We found that insertion layer p-uC-Si:H between AZO and p-a-SiC:H could improve front contact, and then reduce series resistance, and optimal thickness of p-uC-Si:H is 7nm. The simulation results are also identical to realistic process results.
[1]. 經濟部能源局2010年能源統計手冊
[2]. http://ppt.cc/KA8k
[3]. Steven S. Hegedus, William N. Shafarman, Prog. Photovolt: Res. Appl. 2004; 12:155-176
[4]. http://ppt.cc/11kU
[5]. A. Ortiz-Conde, F.J. Garcia Sanchez, J. Muci, Sol. Energy Mater.Sol. Cells 90 (2006) 352-361
[6]. Z. Ouennoughi, M. Chegaar, Solid-State Electronics 43 (1999) 1985-1988
[7]. M. Haouari-Merbaha, M. Belhamelb, I. Tobias, J.M. Ruiza, Sol. Energy Mater. Sol. Cells 87 (2005) 225-233
[8]. Ken-ichi Ishibashi, Yasuo Kimura, Michio Niwano, J. Appl. Phys. 103, 094507 (2008)
[9]. J.A Jervase, H. Bourdoucen, A. Al-Lawati, Meas. Sci. Technol. 12 (2001) 1922–1925
[10]. M. Zagrouba, A. Sellami, M. Bouaicha, M. Ksouri, Solar Energy 84 (2010) 860–866
[11]. Flavius-Maxim Petcut, T. Leonida-Dragomir, CEAI, Vol.12, No.1, pp. 30-37, 2010
[12]. Nicolai Moldovan, Rodrigo Picos, Eugenio Garcia-Moreno, Proceedings of the 2009 Spanish Conference on Electron Devices, 379-382
[13]. A. SELLAI, Z. OUENNOUGHI, International Journal of Modern Physics C, Vol. 16, No. 7 (2005) 1043-1050
[14]. http://ppt.cc/slGU
[15]. http://ppt.cc/O3os
[16]. Donald Neaman, Semiconductor Physics And Devices, 3rd Edition, McGraw Hill, 2002
[17]. Sze S. M., Physics of Semiconductor Devices, 2nd Edition, John Wiley & Sons, New York, NY(1981)
[18]. 黃惠良、曾百亨,“太陽能電池,五南出版”,p98-p108
[19]. 蔡進譯,超高效率太陽電池-從愛因斯坦的光電效應談起
[20]. 林昇甫、徐永吉,“遺傳演算法及其應用Advanced design of experiments”,五南出版
[21]. M. WOLF, G. T. NOEL, AND RICHARD J. STIRN, IEEE TRANSACTIONS ON ELECTRON DEVICES, VOL. ED-24, NO. 4, 419-428
[22]. 莊嘉琛,“太陽能工程-太陽電池篇,全華出版”
[23]. Kasturi Lal Chopra, Suhit Ranjan, Das, “Thin Film Solar cells”, PLENUM
[24]. J. R. SITES, P. H. MAUK, Solar Cells, 27 (1989) 411 – 417
[25]. D. S. H. CHAN, J. R. PHILLIPS and J. C. H. PHANG, Solid-State Electronics 29 (1986) 329-337
[26]. M. Chegaar, G. Azzouzi, P. Mialhe, Solid-State Electronics 50 (2006) 1234-1237
[27]. Xue-Gui Zhu, Zhi-Hong Fu, Xing-Ming Long, Xin-Li, Solar Energy 85 (2011) 393–403
[28]. K. Bouzidi, M. Chegaar, A. Bouhemadou, Sol. Energy Mater. Sol. Cells 91 (2007) 1647-1651
[29]. 趙春棠,“「基因演算法」學習速成”,http://ppt.cc/cVBf
[30]. AMPS-1D Manual
[31]. Yiming Liu, Yun Sun, Angus Rockett, Sol. Energy Mater. Sol. Cells 98 (2012) 124-128
[32]. D.E. Carlson, C.R. Wronski, Appl. Phys. Lett., 29 (1976) 602
[33]. Ruud E.I. Schropp, Miro Zeman, “Amorphous and Microcrystalline Silicon solar cells: Modeling, Materials and Device Technology”, KLUWER ACADEMIC PUBLISHERS
[34]. H. Tasaki, W.Y. Kim, M. Hallerdt, M. Konagai, K. Takahashi, J. Appl. Phys. 103, 094507 (2008)
[35]. M. Kubon, E. Boehmer, F. Siebke, B. Rech, C. Beneking, H. Wagner, Sol. Energy Mater. Sol. Cells 41/42 (1996) 485-492
[36]. Franc Smole, Marko TopiE, JoZe Furlan, Journal of Non-Crystalline Solids 194 (1996) 312-318
[37]. N. Palit and P. Chatterjee, J. Appl. Phys. 86, 6879 (1999)
[38]. Ping-Kuan Chang, Po-Tsung Hsieh , Chun-Hsiung Lu , Chih-Hung Yeh , Mau-Phon Houng, Sol. Energy Mater. Sol. Cells 95 (2011) 2659-2663
[39]. M. Chegaar, G. Azzouzi, P. Mialhe, Solid-State Electronics 50 (2006) 1234-1237
[40]. Xue-Gui Zhu, Zhi-Hong Fu, Xing-Ming Long, Xin-Li, Solar Energy 85 (2011) 393–403
[41]. W. Ma, S. Aoyama, H. Okamoto, Y. Hamakawa, Sol. Energy Mater. Sol. Cells 42 (1996) 453-463
校內:2017-07-05公開