簡易檢索 / 詳目顯示

研究生: 陳蕙琦
Chen, Hui-Chi
論文名稱: 雙層週期性奈米陣列微結構於太陽能選擇性吸收器之提升吸收率分析
Analysis of optical absorption in selective solar absorbers with double-layered Nanostructure Arrays
指導教授: 楊文彬
Young, Wen-Bin
學位類別: 碩士
Master
系所名稱: 工學院 - 航空太空工程學系
Department of Aeronautics & Astronautics
論文出版年: 2015
畢業學年度: 103
語文別: 中文
論文頁數: 100
中文關鍵詞: 太陽能選擇性吸收器雙層結構疊合奈米微結構熱效益分析高溫應用
外文關鍵詞: Selective solar absorbers, Double-layered structure, Nanostructure, Figure of merit, High temperature applications
相關次數: 點閱:146下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 近年來由於石油燃料日益枯竭,綠色能源一直被廣泛討論,利用太陽能集熱器收集太陽能的能源產生熱能便是一種方法,根據普朗克熱輻射定律,在紅外線頻譜區要有低吸收率,以避免吸收輻射能在提高溫度後,又將熱能發散出去,這種特殊的方法稱之為選擇性吸收,太陽能吸收器須在高溫下應用,吸收層在太陽能頻譜波段需要有高平均吸收率(α ̅),在紅外線頻譜波段需擁有低熱發散率(ε ̅)。
    為提高太陽能吸收率,可於吸收塗層改變結構、成分搭配,本文利用光子晶體方法設計雙層結構疊合,以熔點高的鎢做為研究材料,利用COMSOL Multiphysics©模擬軟體,根據赫姆霍茲方程式計算其吸收率與反射率,再用Matlab R2014b進行熱效益分析,以熱效益係數(η_FOM)判別吸收層於800℃高溫的性能。首先,考慮週期為固定邊長L=0.4μm、固定厚度為d=0.32μm下,針對不同晶體形狀、不同填充比例之單層吸收層,垂直入射光源,橫向電場模態(TE偏振平面波),分析對吸收率的影響,得方槽形狀吸收率較圓孔高。再探討四種疊合類型不同填充比例之雙層吸收層,比較鎢平板、單層結構與雙層結構吸收層之熱效益係數,本文結論以雙層方槽疊合類型2的模型為最佳設計,其中上層f_s1=0.75配下層f_s2=0.45的結構計算得最佳結果,比較鎢平板(η_FOM=0.4161)、單層結構(η_FOM=0.6760),其數據為α ̅=0.9215、ε ̅=0.2185、η_FOM=0.7201有較高的光熱轉換效益。

    In recent years due to increasing depletion of oil, the usage of green energy has been widely discussed. Using solar energy collectors to collect solar heat is one of the methods. According to Planck's law (Blackbody radiation law), a solar absorber must be designed to haves low absorption in the infrared spectrum, in order to minimize black body emittance at a high temperature. The characteristic of this absorber is called selective absorption. Solar absorbers are often operated at a high temperature, will need to have high absorption (α ̅) in the solar spectrum range and low thermal emittance (ε ̅) in the infrared range.
    In order to improve solar absorption, some structural designs or compositional modifications are necessary for the surface of the absorber. This study employed tungsten to coat the surface of the absorber. Nanostructure with different square filling ratio (f_s) was designed on the tungsten to form a photonic crystal. Helmholtz’s equation was used to calculate the reflectance, transmittance and absorption of the tungsten by COMSOL Multiphysics simulation software. To characterize the performance of a selective solar absorber at 800 ℃,an index of figure of merit (η_FOM) was defined and calculated by MATLAB in our study. First, consider the geometry of the photonic crystal to be a periodic structure with periodicity L=0.4μm and depth d=0.32μm. The solar radiation was assumed to have an incident angle θ_i=0° with s-polarized plane wave in this study. For a single-layer photonics structure, different cavity shapes and filling ratio, were used to calculate their effects on the heat absorption. After that, a new design of double-layer structures with different square filling ratio (f_s) was proposed. There are four types of double-layer structures. The values of η_FOM were calculated and compared for the designs of single-layer photonics, double-layered photonics and flat plane for the surface of the solar absorber. Finally, the effect of Cermet with double-layered structure on the absorption is also discussed in this study.

    中文摘要................................ I Abstract............................... III 致謝.................................... IX 目錄.................................... X 表目錄.................................. XIII 圖目錄.................................. XIII 附錄圖目錄............................... XVII 第一章、 緒論............................ 1 1-1 前言............................ 1 1-2 研究目的........................ 1 1-3 研究方法........................ 2 1-4 文獻回顧........................ 4 第二章、 研究簡介........................ 10 2-1 太陽能選擇性吸收器之概論.......... 10 2-2 太陽能選擇性吸收器之設計類型....... 11 2-2-1自然選擇性吸收材料................... 11 2-2-2半導體金屬材料...................... 11 2-2-3多層吸收材料........................ 13 2-2-4陶瓷金屬材料........................ 15 2-2-5表面紋理........................... 18 2-2-6光子晶體........................... 21 2-3 結論............................ 28 第三章、 理論原理與模擬介紹 ................29 3-1 前言............................ 29 3-2 基礎電磁學理論................... 30 3-3 有效介質理論..................... 32 3-4 反射率與穿透率計算 ................35 3-5 電磁波輻射理論................... 37 3-5-1黑體輻射........................... 37 3-5-2太陽輻射........................... 39 3-5-3 熱效益分析......................... 41 3-6 結論............................ 44 第四章、 數值結果與討論................... 45 4-1 設計概念........................ 45 4-2 幾何模型建立與文獻比對............ 46 4-3 陶瓷金屬材料..................... 48 4-3-1單層Cermet結果..................... 49 4-3-2雙層Cermet結果..................... 52 4-4 單層幾何結構之設計................ 57 4-4-1圓孔幾何結構........................ 57 4-4-2方槽幾何結構........................ 61 4-5 雙層結構疊合之設計................ 64 4-5-1雙層圓孔結構疊合.................... 66 4-5-2雙層方槽結構疊合.................... 75 4-5-3雙層陶瓷金屬疊合.................... 84 第五章、 結論............................ 88 5-1 結論............................ 88 5-2 成果與展望....................... 89 參考文獻................................ 91 附錄.................................... 97

    [1]P. Bermel., J. Lee., J. D. Joannopoulos., I. Celanovic., and M. Soljaˇcie., "CHAPTER 7 SELECTIVE SOLAR ABSORBERS," ANNUAL REVIEW OF HEAT TRANSFER, vol. 15, pp. 231-254, 2012.
    [2]E. R. a. D. D. Allred, "Chemically vapor-deposited ZrB2 as a selective solar absorber," Thin Solid Films, vol. 83, pp. 393–398, 1981.
    [3]B. O. Seraphin, "CHEMICAL VAPOR-DEPOSITION OF THIN SEMICONDUCTOR-FILMS FOR SOLAR-ENERGY CONVERSION," Thin Solid Films, vol. 39, pp. 87-94, 1976 1976.
    [4]A. Donnadieu and B. O. Seraphin, "OPTICAL PERFORMANCE OF ABSORBER-REFLECTOR COMBINATIONS FOR PHOTOTHERMAL SOLAR-ENERGY CONVERSION," Journal of the Optical Society of America, vol. 68, pp. 292-297, 1978 1978.
    [5]T. A. L. D. A. Williams, and J.A. Duffie., "Selective Radiation Properties of Particulate Coatings," J. Eng. Power, vol. 85A, pp. 213-220, 1963.
    [6]A. Narayanaswamy and G. Chen, "Thermal emission control with one-dimensional metallodielectric photonic crystals," Physical Review B, vol. 70, 2004.
    [7]K. C. P. R. N. Schmidt, R. H. Torberg, and J. E.Jensen., "High Temperature Solar Coating," AST-TDR, vol. 63, p. 579, 1963.
    [8]H. G. Craighead, R. E. Howard, J. E. Sweeney, and R. A. Buhrman, "GRADED-INDEX PT-AL2O3 COMPOSITE SOLAR ABSORBERS," Applied Physics Letters, vol. 39, pp. 29-31, 1981 1981.
    [9]a. Z. E. M. Lanxner, "Solar selective absorber coatings for high service temperatures, produced by plasma sputtering," Proc. SPIE, vol. 1272, pp. 240–249, 1990.
    [10]A. A. G. M. Farooq, and M. G. Hutchins,, "High performance sputtered Ni:SiO2 composite solar absorber surfaces," Sol. Energy Mater. Sol. Cells, vol. 54, pp. 67–73, 1998.
    [11]Y. Y. Q. Zhang, and D. R. Mills, "High efficiency Mo:Al2O3 cermet selective surfaces for high-temperature application," Sol. Energy Mater. Sol. Cells, vol. 40, pp. 43–53, 1996.
    [12]Q. Zhang, "Metal–AlN cermet solar selective coatings deposited by direct current magnetron sputtering technology," J. Phys. D, vol. 31, pp. 355–362, 1998.
    [13]Q. Zhang, "High efficiency Al-N cermet solar coatings with double cermet layer film structures," J. Phys. D, vol. 32, pp. 1938–1944, 1999.
    [14]Q.-C. Zhang, K. Zhao, B. C. Zhang, L. F. Wang, Z. L. Shen, D. Q. Lu, et al., "High performance Al–N cermet solar coatings deposited by a cylindrical direct current magnetron sputter coater," Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, vol. 17, p. 2885, 1999.
    [15]P. B. D. Chester, J. D. Joannopoulos, M. Soljacic, and I. Celanovic, "Design and global optimization of high-efficiency solar thermal systems with tungsten cermets," Opt. Express, vol. 19, pp. A245–A257, 2011.
    [16]M. J. M. M. Kussmaul, and A. Curren, "Ion beam treatment of potential space materials at the NASA Lewis Research Center," Surf. Coat. Technol., vol. 51, pp. 299–306, 1992.
    [17]J. Zhu, Z. Yu, G. F. Burkhard, C. M. Hsu, S. T. Connor, Y. Xu, et al., "Optical absorption enhancement in amorphous silicon nanowire and nanocone arrays," Nano Lett, vol. 9, pp. 279-82, Jan 2009.
    [18]Y. B. Chen and Z. M. Zhang, "Design of tungsten complex gratings for thermophotovoltaic radiators," Optics Communications, vol. 269, pp. 411-417, 2007.
    [19]B. Chen, D. F. Yang, P. A. Charpentier, and S. Nikumb, "Optical and structural properties of pulsed laser deposited Ti : Al2O3 thin films," Solar Energy Materials and Solar Cells, vol. 92, pp. 1025-1029, Sep 2008.
    [20]A. Heinzel, V. Boerner, A. Gombert, B. Bläsi, V. Wittwer, and J. Luther, "Radiation filters and emitters for the NIR based on periodically structured metal surfaces," Journal of Modern Optics, vol. 47, pp. 2399-2419, 2000.
    [21]H. Sai, Y. Kanamori, and H. Yugami, "High-temperature resistive surface grating for spectral control of thermal radiation," Applied Physics Letters, vol. 82, p. 1685, 2003.
    [22]H. Sai, H. Yugami, Y. Kanamori, and K. Hane, "Solar selective absorbers based on two-dimensional W surface gratings with submicron periods for high-temperature photothermal conversion," Solar Energy Materials and Solar Cells, vol. 79, pp. 35-49, 2003.
    [23]H. Sai and H. Yugami, "Thermophotovoltaic generation with selective radiators based on tungsten surface gratings," Applied Physics Letters, vol. 85, p. 3399, 2004.
    [24]J. Wang, Z. Chen, and D. Li, "Simulation of two-dimensional Mo photonic crystal surface for high-temperature solar-selective absorber," physica status solidi (a), vol. 207, pp. 1988-1992, 2010.
    [25]C. M. Lampert, "Coatings for enhanced photothermal energy collection. I: Selective absorbers," Sol. Energy Mater., vol. 1, pp. 319–341, 1979.
    [26]O. P. Agnihotri and B. K. Gupta, Solar selective surfaces, 1981.
    [27]T. J. M. a. D. L. Stierwalt., "Cost-effective PbS-Al Selective Solar-Absorbing Panel," SPIE, vol. 68, pp. 169-171, 1975.
    [28]A. Andersson, O. Hunderi, and C. G. Granqvist, "NICKEL PIGMENTED ANODIC ALUMINUM-OXIDE FOR SELECTIVE ABSORPTION OF SOLAR-ENERGY," Journal of Applied Physics, vol. 51, pp. 754-764, 1980 1980.
    [29]M. Born and E. Wolf, Principles of optics: electromagnetic theory of propagation, interference and diffraction of light: Cambridge university press, 1999.
    [30]D. M. B. Window, and G. Harding, "Selective absorber design," Sol. Energy Mater., vol. 2, pp. 395–401, 1980.
    [31]I. T. R. a. B. Window, "Applications of thin graded-index films to solar absorbers," Appl. Opt., vol. 16, pp. 1438–1443, 1977.
    [32]C. E. Kennedy, "Review of mid- to high temperature solar selective absorber materials," Report,Golden, CO: National Renewable Energy Laboratory Research, 2002.
    [33]M. H. Huang, S. Mao, H. Feick, H. Q. Yan, Y. Y. Wu, H. Kind, et al., "Room-temperature ultraviolet nanowire nanolasers," Science, vol. 292, pp. 1897-1899, Jun 2001.
    [34]H. Sai, Y. Kanamori, K. Hane, and H. Yugami, "Numerical study on spectral properties of tungsten one-dimensional surface-relief gratings for spectrally selective devices," Journal of the Optical Society of America a-Optics Image Science and Vision, vol. 22, pp. 1805-1813, Sep 2005.
    [35]J. T. K. Wan, "Tunable thermal emission at infrared frequencies via tungsten gratings," Optics Communications, vol. 282, pp. 1671-1675, Apr 2009.
    [36]H. Sai, Y. Kanamori, and H. Yugami, "Tuning of the thermal radiation spectrum in the near-infrared region by metallic surface microstructures," Journal of Micromechanics and Microengineering, vol. 15, pp. S243-S249, Sep 2005.
    [37]I. Celanovic, N. Jovanovic, and J. Kassakian, "Two-dimensional tungsten photonic crystals as selective thermal emitters," Applied Physics Letters, vol. 92, p. 193101, 2008.
    [38]F. O. S. I. Celanovic, N. Jovanovic, M. Qi, and J. G. Kassakian, "1D and 2D photonic crystals for thermophotovoltaic applications," Proc. SPIE, vol. 5450, pp. 416–422, 2004.
    [39]E. Rephaeli and S. Fan, "Tungsten black absorber for solar light with wide angular operation range," Applied Physics Letters, vol. 92, p. 211107, 2008.
    [40]E. R. a. S. Fan, "Absorber and emitter for solar thermo-photovoltaic systems to achieve efficiency exceeding the Shockley–Queisser limit," Opt. Express, vol. 17, pp. 15145–15159, 2009.
    [41]J. A. D.-C. C.-H. Chang, H. J. Choi, and G. Barbastathis, "Nanostructured gradient-index antireflection diffractive optics," Opt. Lett., vol. 36, pp. 2354–2356, 2011.
    [42]J. G. F. S.-Y. Lin, and I. El-Kady, "Three-dimensional photonic-crystal emission through thermal excitation," Opt. Lett., vol. 28, pp. 1909–1911, 2003.
    [43]G. A. Niklasson, C. Granqvist, and O. Hunderi, "Effective medium models for the optical properties of inhomogeneous materials," Applied Optics, vol. 20, pp. 26-30, 1981.
    [44]T. Tesfamichael, "Characterization of selective solar absorbers: Experimental and theoretical modeling," 2000.
    [45]ASTM. Reference Solar Spectral Irradiance: Air Mass 1.5 Spectra. Available: http://rredc.nrel.gov/solar/spectra/am1.5/
    [46]L. Z. ÜÖè and X. Diao, "New criterion for optimization of solar selective absorber coatings," Chinese Optics Letters, 2013.
    [47]Refractive.INDEX. Refractive index database. Available: http://refractiveindex.info/
    [48]L. Hu and G. Chen, "Analysis of optical absorption in silicon nanowire arrays for photovoltaic applications," Nano letters, vol. 7, pp. 3249-3252, 2007.

    下載圖示 校內:2020-07-27公開
    校外:2020-07-27公開
    QR CODE