| 研究生: |
盧世宗 Lu, Shih-Zong |
|---|---|
| 論文名稱: |
鐵酸鉍及其鎳鋅鐵氧-鐵酸鉍複合材料的磁性、介電與磁電性質之研究 Magnetic, dielectric and magnetoelectric properties of BiFeO3 and Ni0.5Zn0.5Fe2O4- BiFeO3 composite |
| 指導教授: |
齊孝定
Qi, Xiao-Ding |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
工學院 - 材料科學及工程學系 Department of Materials Science and Engineering |
| 論文出版年: | 2017 |
| 畢業學年度: | 105 |
| 語文別: | 中文 |
| 論文頁數: | 128 |
| 中文關鍵詞: | 多鐵性 、磁電 、複合材料 、鐵酸鉍 |
| 外文關鍵詞: | Multiferroic, magnetoelectric, composites, BiFeO3 |
| 相關次數: | 點閱:167 下載:15 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文主要使用sol-gel製程與磁控濺鍍系統來製備不同型態的多鐵性材料,其中包括塊材樣品與薄膜樣品,分別表示如下(i)單相多鐵性BiFeO3 (BFO);(ii) 多鐵性複合塊材(1-x) BFO+(x) Ni0.5Zn0.5Fe2O4 (NZFO);(iii)多鐵性多晶複合薄膜BFO+NZFO / LaNiO3 (LNO)/ Si;(iv)多鐵性磊晶複合薄膜BFO+NZFO / LNO / (001) SrTiO3 (STO)。
單相多鐵性BFO的樣品使用sol-gel法製備粉末,並在溫度400 ~ 700˚C燒結合成。這些不同溫度燒結的樣品中,低溫(400˚C、500˚C)跟高溫(600˚C、700˚C) 燒結的樣品在介電響應與磁性質上都表現出不一樣的結果。雖然樣品在XRD繞射圖中沒有發現其它二次相,但是藉由樣品在磁性上呈現交換偏置以及TEM觀察,可以證明有磁性相Fe3O4的存在。兩組樣品介電響應的巨大差異可歸咎於晶界的導電度,低溫樣品晶粒表面析出的Fe3O4薄層大幅提升了晶界的導電度,而高溫樣品雖然晶粒大5~10倍之多,但其晶界對介電響應的影響更為顯著。多鐵性複合塊材(1-x)BFO+(x)NZFO亦使用sol-gel法製備粉末,並在600˚C下燒結。從樣品的結構上分析,可以知道兩者經過混合燒結後,不會生成二次相。為研究BFO/NZFO界面反應、交換作用等相關問題,亦在複合材料中加入玻璃相之B2O3。微結構及相分析顯示,加入B2O3後兩相材料依然可以維持原來的結構。磁性分析顯示,沒有加入B2O3的複合材料其矯頑力(HC)隨溫度變化有異常表現,而M-H曲線亦出現交換偏置現象。加入B2O3的複合材料既沒有出現HC異常也沒有出現交換偏置等現象。
多鐵性多晶複合薄膜BFO+ NZFO利用雙靶共濺鍍的方式,分別沉積在Si基板與LNO / Si上,LNO為底電極與緩衝層。成長在LNO/Si上的複合薄膜,其結構特徵為細小的NZFO顆粒鑲嵌在大顆粒BFO中,也就是典型的0-3 type的對接方式。磁性測量發現複合薄膜呈現出明顯的交換偏置,在2 K時約為37 Oe,室溫則下降至11 Oe。此交換偏置的出現亦證實BFO/NZFO界面確實無擴散或化學反應。透過XRD繞射圖中d-spacing的移動以及HC隨溫度變化行為可發現,BFO與NZFO的顆粒都存在殘留應變,此殘留應變使得樣品在沒有施加直流偏壓場時也具有很大的磁電係數。而在共振頻率10 kHz以及外加偏壓場6.5 kOe時,磁電係數達到最大值 869 mV·Oe-1·cm-1。
多鐵性磊晶複合薄膜BFO+ NZFO一樣利用雙靶共濺鍍的方式在STO (001)基板上成長,並透過1D與2D的XRD證實了薄膜間的磊晶關係。在STO基板上方亦鍍有一層磊晶LNO作為量測磁電係數的底電極,此層LNO是由垂直於基板的奈米柱構成,這樣的微結構將有效緩解基板對應力傳遞的鉗制效應。由於LNO的晶格常數比BFO跟NZFO來得小,因此要在LNO上成長磊晶薄膜一定會產生明顯的晶格變形,高精度XRD確實觀察到這一現象。橫截面TEM影像圖顯示BFO與LNO的對應晶面彼此對齊,但是NZFO因為與LNO晶格尺寸相差太大,導致對應晶面之間有7.5˚夾角。因為異質磊晶成長產生更大應變,使得磊晶複合薄膜在沒有直流偏壓磁場時有更大的磁電電壓係數,其值在8 kHz時達911 mV·Oe-1·cm-1。
Multiferroic BiFeO3 (BFO) and its composites with Ni0.5Zn0.5Fe2O4 (NZFO) were synthesized by the sol-gel and dual-target RF magnetron co-sputterring methods. Different forms of composites were prepared, including sintered polycrystalline bulks of BFO+NZFO, polycrystalline thin films of BFO+NZFO/LaNiO3 (LNO)/Si, and epitaxial thin films of BFO+NZFO/LNO/(001) SrTiO3 (STO). BFO samples sintered at 400~500 C showed a single phase in XRD, but a Fe3O4 coating at grain surface was revealed by TEM as well as the occurrence of an exchange bias. So, the samples exhibited very different dielectric and magnetic behaviors from the samples sintered at 600~700 C. Polycrystalline composite films grown on LNO buffered Si substrates showed a grain epitaxy relationship between the BFO and LNO grains, resulting in some residual strain in the films. This led to a large magnetoelectric voltage coefficient at zero magnetic bias. The composite films grown on LNO buffered (001) STO substrates were epitaxial as confirmed by both XRD and TEM. The LNO buffer, which was sputtered epitaxially on STO as the bottom electrode, was composed of nanocolumns vertical to the substrate. Such a nanostructure is desired because it minimizes the “substrate clamp” problem that limits the applications of this type of composite films. The tetragonal distortion in both NZFO and BFO was apparent due to the compressive in-plane strain imposed by the epitaxial growth of larger NZFO and BFO lattices on smaller LNO lattice. The heteroepitaxial growth resulted in an even larger strain in the obtained composite films and hence, a larger zero-bias magnetoelectric voltage coefficient was achieved, which reached 911 mVcm-1Oe-1 at the frequency of 8 kHz.
1.H. Palneedi, V. Annapureddy, S. Priya, J. Ryu, Status
and perspectives of multiferroic magnetoelectric
composite materials and applications, Actuators, 5
(2016).
2.K. H. Cho, S. Priya, Direct and converse effect in
magnetoelectric laminate composites, Applied Physics
Letters, 98, 232904 (2011).
3.R. A. Islam, C. B. Rong, J. P. Liu, S. Priya, Effect of
gradient composite structure in cofired bilayer
composites of Pb (Zr0. 56Ti0. 44) O3–Ni0. 6Zn0. 2Cu0.
2Fe2O4 system on magnetoelectric coefficient, Journal
of materials science, 43,6337-6343 (2008).
4.K. H. Lam, C. Y. Lo, H. L. W. Chan, Frequency response
of magnetoelectric 1–3-type composites, Journal of
applied physics 107, 093901 (2010).
5.R. A. Islam, Y. Ni, A. G. Khachaturyan, S. Priya, Giant
magnetoelectric effect in
sintered multilayered composite structures, Journal of
Applied Physics, 104, 044103 (2008).
6.A. McDannald, M. Staruch, G. Sreenivasulu, C. Cantoni,
G. Srinivasan, M. Jain, Magnetoelectric coupling in
solution derived 3-0 type PbZr0. 52Ti0. 48O3: xCoFe2O4
nanocomposite films, Applied Physics Letters, 102,
122905 (2013).
7.N. M. Aimon, D. H. Kim, X. Sun, C. A. Ross,
Multiferroic Behavior of Templated BiFeO3–CoFe2O4
Self-Assembled Nanocomposites, ACS applied materials &
interfaces, 7, 2263-2268 (2015).
8.E. Lage, C. Kirchhof, V. Hrkac, L. Kienle, R. Jahns,
Knöchel, R. Knöchel, E. Quandt, D. Meyners, Exchange
biasing of magnetoelectric composites, Nature
materials, 11, 523-529 (2012).
9.K. Raidongia, A. Nag, A. Sundaresan, C. N. R. Rao,
Multiferroic and magnetoelectric properties of core-
shell CoFe2O4@ BaTiO3 nanocomposites, Applied Physics
Letters, 97, 062904 (2010).
10.R. Liu, Y. Zhao, R. Huang, Y. Zhao, H. Zhou,
Multiferroic ferrite/perovskite oxide core/shell
nanostructures, Journal of Materials Chemistry, 20,
10665-10670 (2010).
11.M. Liu, X. Li, H. Imrane, Y. Chen, T. Goodrich, Z.
Cai, K. S. Ziemer, J. Y. Huang, N. X. Sun, Synthesis
of ordered arrays of multiferroic NiFe2O4-
Pb(Zr0.52Ti0.48)O3 core-shell nanowires, Applied
physics letters, 90, 152501 (2007).
12.S. Xie, F. Ma, Y. Liu, J. Li, Multiferroic CoFe2O4–
Pb(Zr0.52Ti0.48)O3 core-shell nanofibers and their
magnetoelectric coupling, Nanoscale, 3, 3152-3158
(2011).
13.S. H. Xie, J. Y. Li, Y. Y. Liu, L. N. Lan, G. Jin, Y.
C. Zhou, Electrospinning and multiferroic properties
of NiFe2O4–Pb(Zr0.52Ti0.48)O3 composite nanofibers,
Journal of Applied Physics, 104, 024115 (2008).
14.J. S. Andrew, J. D. Starr, M. A. Budi, Prospects for
nanostructured multiferroic composite materials,
Scripta Materialia, 74, 38-43 (2014).
15.C. Fang, J. Jiao, J. Ma, D. Lin, H. Xu, X. Zhao, H.
Luo, Significant reduction of equivalent magnetic
noise by in-plane series connection in magnetoelectric
Metglas/Mn-doped Pb (Mg1/3Nb2/3)O3-PbTiO3 laminate
composites, Journal of Physics D: Applied Physics, 48,
465002 (2015).
16.D. G. Lee, S. M. Kim, Y. K. Yoo, J. H. Han, D. W.
Chun,Y. C. Kim, J. Kim, K. S. Hwang, T. S. Kim, W. W.
Jo, H. Kim, S. H. Song, J. H. Lee, Ultra-sensitive
magnetoelectric microcantilever at a low frequency,
Applied Physics Letters, 101, 182902 (2012).
17.M. Vopsaroiu, J. Blackburn, A. M. Piniella, M. G.
Cain, Multiferroic magnetic recording read head
technology for 1 Tbit∕ in.2 and beyond, Journal of
Applied Physics, 103, 07F506 (2008).
18.Y. Zhang, Z. Li, C. Deng, J. Ma, Y. Lin, C. W. Nan,
Demonstration of magnetoelectric read head of
multiferroic heterostructures, Applied Physics
Letters, 92, 152510 (2008).
19.K. H. J. Buschow, F. R. de Boer, Physics of magnetism
and magnetic materials, Kluwer Academic/Plenum
Publishers, New York (2003).
20.N. A. Spaldin, Magnetic materials: fundamentals and
applications. Cambridge University Press (2010).
21.W. Heisenberg, Zur theorie des ferromagnetismus,
Zeitschrift für Physik, 49, 619-636 (1928).
22.B. D. Cullity, C. D. Graham, Introduction to magnetic
materials, John Wiley & Sons (2011).
23.W. H. Meiklejohn, C. P. Bean, New magnetic anisotropy,
Physical review, 102, 1413 (1956).
24.J. Nogués, I. K. Schuller, Exchange bias, Journal of
Magnetism and Magnetic Materials, 192, 203-232 (1999).
25.M. Kiwi, Exchange bias theory, Journal of Magnetism
and Magnetic Materials 234, 584-595 (2001).
26.D. Shi, Functional thin films and functional
materials: new concepts and technologies, Springer
Science & Business Media (2003).
27.J. C. Burfoot, G. W. Taylor, Polar dielectrics and
their applications, Univ of California Press (1979).
28.K. C. Kao, Dielectric phenomena in solids, Academic
press (2004).
29.E. Barsoukov, J. R. Macdonald (Eds.), Impedance
spectroscopy: theory, experiment, and applications.
John Wiley & Sons (2005).
30.W. C. Röntgen, Ueber die durch Bewegung eines im
homogenen electrischen Felde befindlichen
Dielectricums hervorgerufene electrodynamische Kraft,
Annalen der Physik, 271, 264-270 (1888).
31.P. Curie, phénomènes physiques les considérations sur
la symétrie fami-lières aux cristallographes, J. Phys.
Theor. Appl., 3, 393-415 (1894).
32.L. D. Landau, E. M. Lifshitz, J. B. Sykes, J. S. Bell,
E. H. Dill, Electrodynamics of continuous media, 48-50
(1961).
33.I. E. Dzyaloshinskii, On the magneto-electrical effect
in antiferromagnets, Soviet Physics Jetp-Ussr, 10,
628-629 (1960).
34.D. N. Astrov, The magnetoelectric effect in
antiferromagnetics, Sov. Phys. JETP, 11, 708-709
(1960).
35.G. T. Rado, V. J. Folen, Observation of the
magnetically induced magnetoelectric effect and
evidence for antiferromagnetic domains, Physical
Review Letters, 7, 310 (1961).
36.M. Fiebig, Revival of the magnetoelectric effect,
Journal of Physics D: Applied Physics, 38, R123
(2005).
37.R. P. Santoro, R. E. Newnham, Survey of
magnetoelectric materials, Massachusettsinst of Tech
Cambridge Lab for Insulation Research (1966).
38.W. F. Brown Jr, R. M. Hornreich, S. Shtrikman, Upper
bound on the magnetoelectric susceptibility, Physical
Review, 168, 574 (1968).
39.V. Wadhawan, Introduction to ferroic materials, CRC
press (2000).
40.G. A. Smolenskiĭ, I. E. Chupis, Ferroelectromagnets,
Soviet Physics Uspekhi, 25, 475 (1982).
41.N. A. Hill, Why are there so few magnetic
ferroelectrics? , J. Phys. Chem. B, 104, 6694-6709
(2000).
42.N. Ortega, A. Kumar, J. F. Scott, R. S. Katiyar,
Multifunctional magnetoelectric materials for device
applications, Journal of Physics: Condensed Matter,
27, 504002 (2015).
43.E. Ascher, H. Rieder, H. Schmid, H. Stössel, Some
Properties of Ferromagnetoelectric Nickel‐Iodine
Boracite, Ni3B7O13I, Journal of Applied Physics, 37,
1404-1405 (1966).
44.E. F. Bertaut, M. Mercier, Structure magnetique de
MnYO3, Physics Letters, 5, 27-29 (1963).
45.N. Ikeda, H. Ohsumi, K. Ohwada, K. Ishii, T. Inami, K.
Kakurai, Y. Murakami, K. Yoshii, S. Mori, Y. Horibe,
H. Kito, Ferroelectricity from iron valence ordering
in the charge-frustrated system LuFe2O4, Nature, 436,
1136-1138 (2005).
46.T. Kimura, T. Goto, H. Shintani, K. Ishizaka, T.
Arima, Y. Tokura, Magnetic control of ferroelectric
polarization, nature, 426, 55-58 (2003).
47.B. D. Tellegen, The gyrator, a new electric network
element, Philips Res. Rep, 3, 81-101 (1948).
48.J. Van Suchtelen, Product properties: a new
application of composite materials, Philips Res. Rep,
27, 28-37 (1972).
49.J. Van den Boomgaard, D. R. Terrell, R. A. J. Born, H.
F. J. I. Giller, An in situ grown eutectic
magnetoelectric composite material, Journal of
Materials Science, 9, 1705-1709 (1974).
50.A. M. J. G. Van Run, D. R. Terrell, J. H. Scholing, An
in situ grown eutectic magnetoelectric composite
material, Journal of Materials Science, 9, 1710-1714
(1974).
51.C. W. Nan, M. I. Bichurin, S. Dong, D. Viehland, G.
Srinivasan, Multiferroic magnetoelectric composites:
historical perspective, status, and future directions,
Journal of Applied Physics, 103, 031101 (2008).
52.C. W. Nan, Physics of inhomogeneous inorganic
materials, Progress in Materials Science, 37, 1-116
(1993).
53.C. W. Nan, N. Cai, L. Liu, J. Zhai, Y. Ye, Y. Lin,
Coupled magnetic–electric properties and critical
behavior in multiferroic particulate composites,
Journal of applied physics, 94, 5930-5936 (2003).
54.N. N. Krainik, N. P. Khuchua, V. V. Zhdanova, V. A.
Esveev, Phase transitions in BiFeO3, Soviet Physics
Solid State, USSR, 8, 654 (1966).
55.I. G. Ismailzade, An X-Ray Study of the Phase
Transitions in Bismuth Ferrite, Soviet Physics
Doklady, 11, 747 (1967).
56.C. Ederer, N. A. Spaldin, Weak ferromagnetism and
magnetoelectric coupling in bismuth ferrite, Physical
Review B, 71, 060401 (2005).
57.A. M. Kadomtseva, Y. F. Popov, A. P. Pyatakov, G. P.
Vorob’ev, A. K. Zvezdin, D. Viehland, Phase
transitions in multiferroic BiFeO3 crystals, thin-
layers, and ceramics: enduring potential for a single
phase, room-temperature magnetoelectric ‘holy grail’,
Phase Transitions, 79, 1019-1042 (2006).
58.I. A. Sergienko, E. Dagotto, Role of the
Dzyaloshinskii-Moriya interaction in multiferroic
perovskites, Physical Review B, 73, 094434 (2006).
59.H. Yang, Y. Q. Wang, H. Wang, Q. X. Jia, Oxygen
concentration and its effect on the leakage current in
BiFeO3 thin films, Applied Physics Letters, 96, 012909
(2010).
60.A. Miszczyk, K. Darowicki, Study of anticorrosion and
microwave absorption properties of NiZn ferrite
pigments, Anti-Corrosion Methods and Materials, 58,
13-21 (2011).
61.K. E. Sickafus, J. M. Wills, N. W. Grimes, Structure
of spinel, Journal of the American Ceramic Society,
82, 3279-3292 (1999).
62.C. M. Srivastava, G. Srinivasan, N. G. Nanadikar,
Exchange constants in spinel ferrites, Physical Review
B, 19, 499 (1979).
63.General Area Detector Diffraction System (GADDS) User
Manual, Version 4.1,
Bruker AXS Inc., USA, 2005.
64.汪建民,材料分析,中國材料科學學會 (1998)
65.鮑忠興、劉思謙,近代穿透式電子顯微鏡實務,(2009)
66.M. Mahesh Kumar, A. Srinivas, S. V. Suryanarayana, G.
S. Kumar, T. Bhimasankaram, An experimental setup for
dynamic measurement of magnetoelectric effect,
Bulletin of Materials Science, 21, 251-255 (1998).
67.Model SR830 DSP Lock-in amplifier User Manual,
Stanford Research System Inc. (2011).
68.S. Z. Lu, X. Qi, Magnetic and dielectric properties of
nanostructured BiFeO3 prepared by Sol-Gel method, J.
Am. Ceram. Soc., 97, 2185-2194 (2014).
69.S. Z. Lu, X. Qi, RF magnetron co-sputtering growth and
characterisation of multiferroic composite films of
Ni0.5Zn0.5Fe2O4+BiFeO3, J. of materials Chem. C, 4,
8679-8686 (2016).
70.W. J. Lin, W. C. Chang, X. Qi, Exchange bias and
magneto-resistance in an all-oxide spin valve with
multi-ferroic BiFeO3 as the pinning layer, Acta
Materialia, 61, 7444-7453 (2013).
71.W. J. Lin, X. Qi, G. Chern, Epitaxial growth and
exchange coupling of spinel ferrimagnet
Ni0.3Zn0.7Fe2O4 on multiferroic BiFeO3, Thin Solid
Films, 519, 8326-8329 (2011).
72.S. Z. Lu, X. Qi, Epitaxial growth of Ni0.5 Zn0.5 Fe2
O4+ BiFeO3 composite films on SrTiO3 substrates,
Journal of Alloys and Compounds, 708, 194-201, (2017).
73.A. Goldman, Modern ferrite technology, Springer
Science & Business Media, USA (2006).
74.X. Qi, W. C. Chang, J. C. Kuo, I. G. Chen, Y. C. Chen,
C. H. Ko, Growth and characterisation of multiferroic
BiFeO3 films with fully saturated ferroelectric
hysteresis loops and large remanent polarisations,
Journal of the European Ceramic Society, 30, 283-287
(2010).
75.M. Ohring, Materials Science of Thin Films, second
ed., p. 382, Academic Press, London (2002).
76.S. K. Jana, P. Mukhopadhyay, S. Ghosh, S. Kabi, A.
Bag, R. Kumar, D. Biswas, High-resolution X-ray
diffraction analysis of AlXGa1−XN/InXGa1−XN/GaN on
sapphire multilayer structures: Theoretical,
simulations, and experimental observations, Journal of
Applied Physics, 115, 174507 (2014).
77.P. Huang, M. M. A. Kalyar, R. F. Webster, D. Cherns,
M. N. Ashfold, Tungsten oxide nanorod growth by pulsed
laser deposition: influence of substrate and process
conditions, Nanoscale, 6, 13586-13597 (2014).
78.S. Y. Woo, G. A. Devenyi, S. Ghanad-Tavakoli, R. N.
Kleiman, J. S. Preston, G. A. Botton, Tilted epitaxy
on (211)-oriented substrates, Applied Physics Letters,
102, 132103 (2013).
79.I. Sosnowska, T. P. Neumaier, E. Steichele, Spiral
magnetic ordering in bismuth ferrite, Journal of
Physics C: Solid State Physics, 15, 4835 (1982).
80.J. A. Mydosh, Spin Glasses: An Experimental
Introduction, Taylor and Francis, London (1993).
81.P. A. Joy, P. A. Kumar, S. K. Date, The relationship
between field-cooled and zero-field-cooled
susceptibilities of some ordered magnetic systems,
Journal of Physics: Condensed Matter, 10, 11049
(1998).
82.T. J. Park, G. C. Papaefthymiou, A. J. Viescas, A. R.
Moodenbaugh, S. S. Wong, Size-dependent magnetic
properties of single-crystalline multiferroic BiFeO3
nanoparticles, Nano letters, 7, 766-772 (2007).
83.M. K. Singh, W. Prellier, M. P. Singh, R. S. Katiyar,
J. F. Scott, Spin-glass transition in single-crystal
BiFeO3, Physical Review B, 77, 144403 (2008).
84.R. Mazumder, S. Ghosh, P. Mondal, D. Bhattacharya, S.
Dasgupta, N. Das,A. Sen, A. K. Tyagi, M. Sivakumar, T.
Takami, H. Ikuta, Particle size dependence of
magnetization and phase transition near TN in
multiferroic BiFeO3, Journal of applied physics, 100,
033908 (2006).
85.A. Goldman, Modern ferrite technology, Springer
Science & Business Media (2006).
86.X. Qi, P. C. Tsai, Y. C. Chen, Q. R. Lin, W. C. Chang,
I. G. Chen, Optimal growth windows of multiferroic
BiFeO3 films and characteristics of ferroelectric
domain structures, Thin Solid Films, 517, 5862-5866
(2009).
87.S. Vijayanand, H. S. Potdar, P. A. Joy, Origin of high
room temperature ferromagnetic moment of
nanocrystalline multiferroic BiFeO3, Applied physics
letters, 94, 182507 (2009).
88.G. H. der anorganischen Chemie, System-Nummer 19,
Wismut und Radioaktive Isotope, 8 vollig neu
bearbeitete Aufl, Verlag Chemie GmbH (1964).
89.D. K. Mishra, X. Qi, Energy levels and
photoluminescence properties of nickel-doped bismuth
ferrite, Journal of Alloys and Compounds, 504, 27-31
(2010).
90.P. B. Macedo, C. T. Moynihan, R. Bose, Role of ionic
diffusion in polarization in vitreous ionic
conductors, Physics and Chemistry of Glasses, 13, 171-
179 (1972).
91.R. Gerhardt, Impedance and dielectric spectroscopy
revisited: distinguishing localized relaxation from
long-range conductivity, Journal of Physics and
Chemistry of Solids, 55, 1491-1506 (1994).
92.I. M. Hodge, M. D. Ingram, A. R. West, Impedance and
modulus spectroscopy of polycrystalline solid
electrolytes, Journal of Electroanalytical Chemistry
and Interfacial Electrochemistry, 74, 125-143 (1976).
93.J. Liu, C. G. Duan, W. G. Yin, W. N. Mei, R. W. Smith,
J. R. Hardy, Dielectric permittivity and electric
modulus in Bi2Ti4O11, The Journal of chemical physics,
119, 2812-2819 (2003).
94.A. K. Jonscher, Dielectric relaxation in solids,
Journal of Physics D: Applied Physics, 32, R57 (1999).
95.P. A. Miles, W. B. Westphal, A. Von Hippel, Dielectric
spectroscopy of ferromagnetic semiconductors, Reviews
of Modern Physics, 29, 279 (1957).
96.B. A. Griffiths, D. Elwell, R. Parker, The
thermoelectric power of the system NiFe2O4-Fe3O4,
Philosophical Magazine, 22, 163-174 (1970).
97.W. F. J. Fontijn, P. J. Van der Zaag, L. F. Feiner, R.
Metselaar, M. A. C. Devillers, A consistent
interpretation of the magneto-optical spectra of
spinel type ferrites, Journal of Applied Physics, 85,
5100-5105 (1999)
98.W. F. J. Fontijn, P. J. Van der Zaag, M. A. C.
Devillers, V. A. M. Brabers, R. Metselaar, Optical and
magneto-optical polar Kerr spectra of Fe3O4 and Mg2+-
or Al3+-substituted Fe3O4, Physical Review B, 56, 5432
(1997).
99.Y. J. Siao, X. Qi, C. R. Lin, J. C. A. Huang,
Dielectric relaxation and magnetic behavior of
bismuth-substituted yttrium iron garnet, Journal of
Applied Physics, 109, 07A508 (2011).
100.J. Liu, C. G. Duan, W. G. Yin, W. N. Mei, R. W.
Smith, J. R. Hardy, Large dielectric constant and
Maxwell-Wagner relaxation in Bi2∕3Cu3Ti4O12, Physical
review B, 70, 144106 (2004).
101.A. R. Von Hippel, Dielectrics and waves, New York,
Wiley (1954).
102.H. F. Zhang, P. Du, Preparation of Fine-Grained
Multiferroic BaTiO3-(Ni0.5Zn0.5) Fe2O4 Ceramic
Composites. Ferroelectrics, 387, 175-183 (2009).
103.R. F. Zhang, C. Y. Deng, L. Ren, Z. Li, J. P. Zhou,
The Giant Dielectric Constant and High Initial
Permeability of BaTiO3-Ni0.5Zn0.5Fe2O4 Composite
Ceramics, ECS Journal of Solid State Science and
Technology, 2, N165-N168 (2013).
104.E. Fertman, S. Dolya, V. Desnenko, L. A. Pozhar, M.
Kajňaková, A. Feher, Exchange bias in phase-
segregated Nd2/3Ca1/3MnO3 as a function of
temperature and cooling magnetic fields, Journal of
Applied Physics, 115, 203906 (2014).
105.X. H. Huang, J. F. Ding, G. Q. Zhang, Y. Hou, Y. P.
Yao, X. G. Li, Size-dependent exchange bias in
La0.25Ca0.75MnO3 nanoparticles, Physical Review B,
78, 224408 (2008).
106.B. Ahmmad, M. Z. Islam, A. Billah, M. A. Basith,
Anomalous coercivity enhancement with temperature and
tunable exchange bias in Gd and Ti co-doped BiFeO3
multiferroics, Journal of Physics D: Applied Physics,
49, 095001 (2016).
107.B. Xiao, N. Ma, P. Du, Percolative NZFO/BTO ceramic
composite with magnetism threshold, Journal of
Materials Chemistry C, 1, 6325-6334 (2013).
108.S. Hussain, S. K. Hasanain, G. H. Jaffari, N. Z. Ali,
M. Siddique, S. I. Shah, Correlation between
structure, oxygen content and the multiferroic
properties of Sr doped BiFeO3, Journal of Alloys and
Compounds, 622, 8-16 (2015).
109.S. Hussain, S. Khurshid Hasanain, G. Hassnain
Jaffari, S. Faridi, F. Rehman, T. Ali Abbas, S. Ismat
Shah, Size and lone pair effects on the multiferroic
properties of Bi0.75A0.25FeO3− δ(A= Sr, Pb, and Ba)
ceramics, Journal of the American Ceramic Society,
96, 3141-3148 (2013).
110.T. J. Park, G. C. Papaefthymiou, A. J. Viescas, Y.
Lee, H. Zhou, H. S. S. Wong, Composition-dependent
magnetic properties of BiFeO3-BaTiO3 solid solution
nanostructures, Physical Review B, 82, 024431 (2010).
111.A. J. Rondinone, A. C. Samia, Z. J. Zhang,
Superparamagnetic relaxation and magnetic anisotropy
energy distribution in CoFe2O4 spinel ferrite
nanocrystallites, The Journal of Physical Chemistry
B, 103, 6876-6880 (1999).
112.T. L. Qu, Y. G. Zhao, P. Yu, H. C. Zhao, S. Zhang, L.
F. Yang, Exchange bias effects in epitaxial
Fe3O4/BiFeO3 heterostructures, Applied Physics
Letters, 100, 242410 (2012).
113.N. Moutis, C. Christides, I. Panagiotopoulos, D.
Niarchos, Exchange-coupling properties of
La1−xCaxMnO3 ferromagnetic/antiferromagnetic
multilayers, Physical Review B, 64, 094429 (2001).
114.J. F. Ding, O. I. Lebedev, S. Turner, Y. F. Tian, W.
J. Hu, J. W. Seo, C. Panagopoulos, W. Prellier, G.
Van Tendeloo, T. Wu, Interfacial spin glass state and
exchange bias in manganite bilayers with competing
magnetic orders, Physical Review B, 87, 054428
(2013).
115.A. P. Malozemoff, Mechanisms of exchange anisotropy,
Journal of Applied Physics, 63, 3874-3879 (1988).
116.N. N. Phuoc, T. Suzuki, Mechanism of blocking
temperature difference for parallel and perpendicular
exchange biases in FePt/FeMn multilayers, IEEE
transactions on magnetics, 43, 897-899 (2007).
117.A. Goldman, Modern ferrite technology, Springer
Science & Business Media (2006).
118.M. Zhang, Z. Zi, Q. Liu, P. Zhang, X. Tang, J. Yang,
X. Zhu, Y. Sum, J. Dai, Size Effects on Magnetic
Properties of Prepared by Sol-Gel Method, Advances in
Materials Science and Engineering, 2013 (2013).
119.D. Craik, Magnetism: Principles and Applications,
John Wiley & Sons, West Sussex, England (1995).
120.S. Chikazumi, C. D. Graham, Physics of Ferromagnetism
2e, Oxford University Press on Demand (2009).
121.H. B. Callen, E. Callen, The present status of the
temperature dependence of magnetocrystalline
anisotropy, and the l(l+1)2 power law, Journal of
Physics and Chemistry of Solids, 27, 1271-1285
(1966).
122.S. K. Mandal, G. Sreenivasulu, V. M. Petrov, G.
Srinivasan, Flexural deformation in a compositionally
stepped ferrite and magnetoelectric effects in a
composite with piezoelectrics, Applied Physics
Letters, 96, 192502 (2010).
123.P. Niemiec, D. Bochenek, A. Chrobak, P. Guzdek, A.
Błachowski, Ferroelectric–ferromagnetic ceramic
composites based on PZT with added ferrite,
International Journal of Applied Ceramic Technology,
12 (2015).
124.P. Guzdek, The magnetostrictive and magnetoelectric
characterization of Ni0.3Zn0.62 Cu0.08Fe2O4–
Pb(FeNb)0.5O3 laminated composite, Journal of
Magnetism and Magnetic Materials, 349, 219-223
(2014).
125.J. Kulawik, D. agierczak, P. dek, Magnetic,
magnetoelectric and dielectric behavior of CoFe2O4–
Pb(Fe1/2Nb1/2)O3 particulate and layered composites,
Journal of magnetism and magnetic materials, 324,
3052-3057 (2012).
126.M. Szklarska-Łukasik, P. Guzdek, M. Dudek, A.
Pawlaczyk, J. Chmist, W. Dorowski, J. Pszczoła,
Magnetoelectric properties of Tb0.27−xDy0.73−yYx+yFe2
/PVDF composites, Journal of Alloys and Compounds,
549, 276-282 (2013).