簡易檢索 / 詳目顯示

研究生: 盧世宗
Lu, Shih-Zong
論文名稱: 鐵酸鉍及其鎳鋅鐵氧-鐵酸鉍複合材料的磁性、介電與磁電性質之研究
Magnetic, dielectric and magnetoelectric properties of BiFeO3 and Ni0.5Zn0.5Fe2O4- BiFeO3 composite
指導教授: 齊孝定
Qi, Xiao-Ding
學位類別: 博士
Doctor
系所名稱: 工學院 - 材料科學及工程學系
Department of Materials Science and Engineering
論文出版年: 2017
畢業學年度: 105
語文別: 中文
論文頁數: 128
中文關鍵詞: 多鐵性磁電複合材料鐵酸鉍
外文關鍵詞: Multiferroic, magnetoelectric, composites, BiFeO3
相關次數: 點閱:167下載:15
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文主要使用sol-gel製程與磁控濺鍍系統來製備不同型態的多鐵性材料,其中包括塊材樣品與薄膜樣品,分別表示如下(i)單相多鐵性BiFeO3 (BFO);(ii) 多鐵性複合塊材(1-x) BFO+(x) Ni0.5Zn0.5Fe2O4 (NZFO);(iii)多鐵性多晶複合薄膜BFO+NZFO / LaNiO3 (LNO)/ Si;(iv)多鐵性磊晶複合薄膜BFO+NZFO / LNO / (001) SrTiO3 (STO)。
    單相多鐵性BFO的樣品使用sol-gel法製備粉末,並在溫度400 ~ 700˚C燒結合成。這些不同溫度燒結的樣品中,低溫(400˚C、500˚C)跟高溫(600˚C、700˚C) 燒結的樣品在介電響應與磁性質上都表現出不一樣的結果。雖然樣品在XRD繞射圖中沒有發現其它二次相,但是藉由樣品在磁性上呈現交換偏置以及TEM觀察,可以證明有磁性相Fe3O4的存在。兩組樣品介電響應的巨大差異可歸咎於晶界的導電度,低溫樣品晶粒表面析出的Fe3O4薄層大幅提升了晶界的導電度,而高溫樣品雖然晶粒大5~10倍之多,但其晶界對介電響應的影響更為顯著。多鐵性複合塊材(1-x)BFO+(x)NZFO亦使用sol-gel法製備粉末,並在600˚C下燒結。從樣品的結構上分析,可以知道兩者經過混合燒結後,不會生成二次相。為研究BFO/NZFO界面反應、交換作用等相關問題,亦在複合材料中加入玻璃相之B2O3。微結構及相分析顯示,加入B2O3後兩相材料依然可以維持原來的結構。磁性分析顯示,沒有加入B2O3的複合材料其矯頑力(HC)隨溫度變化有異常表現,而M-H曲線亦出現交換偏置現象。加入B2O3的複合材料既沒有出現HC異常也沒有出現交換偏置等現象。
    多鐵性多晶複合薄膜BFO+ NZFO利用雙靶共濺鍍的方式,分別沉積在Si基板與LNO / Si上,LNO為底電極與緩衝層。成長在LNO/Si上的複合薄膜,其結構特徵為細小的NZFO顆粒鑲嵌在大顆粒BFO中,也就是典型的0-3 type的對接方式。磁性測量發現複合薄膜呈現出明顯的交換偏置,在2 K時約為37 Oe,室溫則下降至11 Oe。此交換偏置的出現亦證實BFO/NZFO界面確實無擴散或化學反應。透過XRD繞射圖中d-spacing的移動以及HC隨溫度變化行為可發現,BFO與NZFO的顆粒都存在殘留應變,此殘留應變使得樣品在沒有施加直流偏壓場時也具有很大的磁電係數。而在共振頻率10 kHz以及外加偏壓場6.5 kOe時,磁電係數達到最大值 869 mV·Oe-1·cm-1。
    多鐵性磊晶複合薄膜BFO+ NZFO一樣利用雙靶共濺鍍的方式在STO (001)基板上成長,並透過1D與2D的XRD證實了薄膜間的磊晶關係。在STO基板上方亦鍍有一層磊晶LNO作為量測磁電係數的底電極,此層LNO是由垂直於基板的奈米柱構成,這樣的微結構將有效緩解基板對應力傳遞的鉗制效應。由於LNO的晶格常數比BFO跟NZFO來得小,因此要在LNO上成長磊晶薄膜一定會產生明顯的晶格變形,高精度XRD確實觀察到這一現象。橫截面TEM影像圖顯示BFO與LNO的對應晶面彼此對齊,但是NZFO因為與LNO晶格尺寸相差太大,導致對應晶面之間有7.5˚夾角。因為異質磊晶成長產生更大應變,使得磊晶複合薄膜在沒有直流偏壓磁場時有更大的磁電電壓係數,其值在8 kHz時達911 mV·Oe-1·cm-1。

    Multiferroic BiFeO3 (BFO) and its composites with Ni0.5Zn0.5Fe2O4 (NZFO) were synthesized by the sol-gel and dual-target RF magnetron co-sputterring methods. Different forms of composites were prepared, including sintered polycrystalline bulks of BFO+NZFO, polycrystalline thin films of BFO+NZFO/LaNiO3 (LNO)/Si, and epitaxial thin films of BFO+NZFO/LNO/(001) SrTiO3 (STO). BFO samples sintered at 400~500 C showed a single phase in XRD, but a Fe3O4 coating at grain surface was revealed by TEM as well as the occurrence of an exchange bias. So, the samples exhibited very different dielectric and magnetic behaviors from the samples sintered at 600~700 C. Polycrystalline composite films grown on LNO buffered Si substrates showed a grain epitaxy relationship between the BFO and LNO grains, resulting in some residual strain in the films. This led to a large magnetoelectric voltage coefficient at zero magnetic bias. The composite films grown on LNO buffered (001) STO substrates were epitaxial as confirmed by both XRD and TEM. The LNO buffer, which was sputtered epitaxially on STO as the bottom electrode, was composed of nanocolumns vertical to the substrate. Such a nanostructure is desired because it minimizes the “substrate clamp” problem that limits the applications of this type of composite films. The tetragonal distortion in both NZFO and BFO was apparent due to the compressive in-plane strain imposed by the epitaxial growth of larger NZFO and BFO lattices on smaller LNO lattice. The heteroepitaxial growth resulted in an even larger strain in the obtained composite films and hence, a larger zero-bias magnetoelectric voltage coefficient was achieved, which reached 911 mVcm-1Oe-1 at the frequency of 8 kHz.

    摘要....................................................I Extended Abstract.....................................III 致謝...................................................XI 目錄..................................................XII 表目錄.................................................XV 圖目錄................................................XVI 第一章 序論............................................1 1-1多鐵性與磁電材料簡介...................................1 1-2磁電複合材料的應用.....................................5 第二章 文獻回顧與基礎理論..............................10 2-1 磁性來源與分類......................................10 2-1-1 鐵磁性 (Ferromagnetism)..........................11 2-1-2 反鐵磁性 (Antiferromagnetism).....................12 2-1-3 交換偏置 (Exchange Bias)..........................14 2-2 介電理論............................................16 2-2-1 介電性質..........................................16 2-2-2極化機制...........................................17 2-2-3介電鬆弛...........................................20 2-3 磁電效應............................................24 2-4 多鐵性材料..........................................27 2-5 單相多鐵性材料......................................28 2-6 多鐵性複合材料......................................31 2-7 鉍鐵氧(BiFeO3)簡介..................................36 2-8 鎳鋅鐵氧(NixZn1-xFe2O4)簡介.........................39 第三章 實驗方法.......................................42 3-1 實驗方式簡介........................................42 3-2 Sol-Gel合成BiFeO3與(1-x)BiFeO3+(x)Ni0.5Zn0.5Fe2O4 複合材料................................................42 3-3 Co-Sputter成長多晶、磊晶的BiFeO3+ Ni0.5Zn0.5Fe2O4 複合薄膜................................................45 3-4 分析儀器與原理......................................47 3-4-1 分析儀器的樣品準備.................................47 3-4-2 X光繞射儀 (X-Ray Diffractometer, XRD)............48 3-4-3 化學分析電子儀 (Electron Spectroscopy for Chemical Analysis)..............................................52 3-4-4 電子顯微鏡 (Electron Microscopy)..................53 3-4-5 磁電係數量測系統 (Magnetoelectric effect measurement system)................................................54 第四章 樣品結構分析....................................57 4-1 BiFeO3塊材結構分析..................................57 4-2 (1-x)BiFeO3+(x) Ni0.5Zn0.5Fe2O4複合材料的結構分析....62 4-3 多晶複合薄膜BiFeO3+Ni0.5Zn0.5Fe2O4的結構分析.........68 4-4 磊晶複合薄膜BiFeO3+Ni0.5Zn0.5Fe2O4的結構分析.........74 第五章 塊材BiFeO3的介電與磁性分析........................84 5-1 BFO塊材的磁特性.....................................84 5-2 BFO塊材的介電特性...................................87 第六章 複合材料的磁性與磁電特性分析......................102 6-1 (1-x)BiFeO3+(x)Ni0.5Zn0.5Fe2O4複合材料的磁特性......102 6-2多晶複合薄膜BiFeO3+Ni0.5Zn0.5Fe2O4/LNO/Si的磁特性....107 6-3多晶複合薄膜BiFeO3+Ni0.5Zn0.5Fe2O4/LNO/Si的磁電係數..110 6-4磊晶複合薄膜BiFeO3+Ni0.5Zn0.5Fe2O4/LNO/STO的磁電係數.111 第七章 結論...........................................114 參考文獻...............................................116

    1.H. Palneedi, V. Annapureddy, S. Priya, J. Ryu, Status
    and perspectives of multiferroic magnetoelectric
    composite materials and applications, Actuators, 5
    (2016).
    2.K. H. Cho, S. Priya, Direct and converse effect in
    magnetoelectric laminate composites, Applied Physics
    Letters, 98, 232904 (2011).
    3.R. A. Islam, C. B. Rong, J. P. Liu, S. Priya, Effect of
    gradient composite structure in cofired bilayer
    composites of Pb (Zr0. 56Ti0. 44) O3–Ni0. 6Zn0. 2Cu0.
    2Fe2O4 system on magnetoelectric coefficient, Journal
    of materials science, 43,6337-6343 (2008).
    4.K. H. Lam, C. Y. Lo, H. L. W. Chan, Frequency response
    of magnetoelectric 1–3-type composites, Journal of
    applied physics 107, 093901 (2010).
    5.R. A. Islam, Y. Ni, A. G. Khachaturyan, S. Priya, Giant
    magnetoelectric effect in
    sintered multilayered composite structures, Journal of
    Applied Physics, 104, 044103 (2008).
    6.A. McDannald, M. Staruch, G. Sreenivasulu, C. Cantoni,
    G. Srinivasan, M. Jain, Magnetoelectric coupling in
    solution derived 3-0 type PbZr0. 52Ti0. 48O3: xCoFe2O4
    nanocomposite films, Applied Physics Letters, 102,
    122905 (2013).
    7.N. M. Aimon, D. H. Kim, X. Sun, C. A. Ross,
    Multiferroic Behavior of Templated BiFeO3–CoFe2O4
    Self-Assembled Nanocomposites, ACS applied materials &
    interfaces, 7, 2263-2268 (2015).
    8.E. Lage, C. Kirchhof, V. Hrkac, L. Kienle, R. Jahns,
    Knöchel, R. Knöchel, E. Quandt, D. Meyners, Exchange
    biasing of magnetoelectric composites, Nature
    materials, 11, 523-529 (2012).
    9.K. Raidongia, A. Nag, A. Sundaresan, C. N. R. Rao,
    Multiferroic and magnetoelectric properties of core-
    shell CoFe2O4@ BaTiO3 nanocomposites, Applied Physics
    Letters, 97, 062904 (2010).
    10.R. Liu, Y. Zhao, R. Huang, Y. Zhao, H. Zhou,
    Multiferroic ferrite/perovskite oxide core/shell
    nanostructures, Journal of Materials Chemistry, 20,
    10665-10670 (2010).
    11.M. Liu, X. Li, H. Imrane, Y. Chen, T. Goodrich, Z.
    Cai, K. S. Ziemer, J. Y. Huang, N. X. Sun, Synthesis
    of ordered arrays of multiferroic NiFe2O4-
    Pb(Zr0.52Ti0.48)O3 core-shell nanowires, Applied
    physics letters, 90, 152501 (2007).
    12.S. Xie, F. Ma, Y. Liu, J. Li, Multiferroic CoFe2O4–
    Pb(Zr0.52Ti0.48)O3 core-shell nanofibers and their
    magnetoelectric coupling, Nanoscale, 3, 3152-3158
    (2011).
    13.S. H. Xie, J. Y. Li, Y. Y. Liu, L. N. Lan, G. Jin, Y.
    C. Zhou, Electrospinning and multiferroic properties
    of NiFe2O4–Pb(Zr0.52Ti0.48)O3 composite nanofibers,
    Journal of Applied Physics, 104, 024115 (2008).
    14.J. S. Andrew, J. D. Starr, M. A. Budi, Prospects for
    nanostructured multiferroic composite materials,
    Scripta Materialia, 74, 38-43 (2014).
    15.C. Fang, J. Jiao, J. Ma, D. Lin, H. Xu, X. Zhao, H.
    Luo, Significant reduction of equivalent magnetic
    noise by in-plane series connection in magnetoelectric
    Metglas/Mn-doped Pb (Mg1/3Nb2/3)O3-PbTiO3 laminate
    composites, Journal of Physics D: Applied Physics, 48,
    465002 (2015).
    16.D. G. Lee, S. M. Kim, Y. K. Yoo, J. H. Han, D. W.
    Chun,Y. C. Kim, J. Kim, K. S. Hwang, T. S. Kim, W. W.
    Jo, H. Kim, S. H. Song, J. H. Lee, Ultra-sensitive
    magnetoelectric microcantilever at a low frequency,
    Applied Physics Letters, 101, 182902 (2012).
    17.M. Vopsaroiu, J. Blackburn, A. M. Piniella, M. G.
    Cain, Multiferroic magnetic recording read head
    technology for 1 Tbit∕ in.2 and beyond, Journal of
    Applied Physics, 103, 07F506 (2008).
    18.Y. Zhang, Z. Li, C. Deng, J. Ma, Y. Lin, C. W. Nan,
    Demonstration of magnetoelectric read head of
    multiferroic heterostructures, Applied Physics
    Letters, 92, 152510 (2008).
    19.K. H. J. Buschow, F. R. de Boer, Physics of magnetism
    and magnetic materials, Kluwer Academic/Plenum
    Publishers, New York (2003).
    20.N. A. Spaldin, Magnetic materials: fundamentals and
    applications. Cambridge University Press (2010).
    21.W. Heisenberg, Zur theorie des ferromagnetismus,
    Zeitschrift für Physik, 49, 619-636 (1928).
    22.B. D. Cullity, C. D. Graham, Introduction to magnetic
    materials, John Wiley & Sons (2011).
    23.W. H. Meiklejohn, C. P. Bean, New magnetic anisotropy,
    Physical review, 102, 1413 (1956).
    24.J. Nogués, I. K. Schuller, Exchange bias, Journal of
    Magnetism and Magnetic Materials, 192, 203-232 (1999).
    25.M. Kiwi, Exchange bias theory, Journal of Magnetism
    and Magnetic Materials 234, 584-595 (2001).
    26.D. Shi, Functional thin films and functional
    materials: new concepts and technologies, Springer
    Science & Business Media (2003).
    27.J. C. Burfoot, G. W. Taylor, Polar dielectrics and
    their applications, Univ of California Press (1979).
    28.K. C. Kao, Dielectric phenomena in solids, Academic
    press (2004).
    29.E. Barsoukov, J. R. Macdonald (Eds.), Impedance
    spectroscopy: theory, experiment, and applications.
    John Wiley & Sons (2005).
    30.W. C. Röntgen, Ueber die durch Bewegung eines im
    homogenen electrischen Felde befindlichen
    Dielectricums hervorgerufene electrodynamische Kraft,
    Annalen der Physik, 271, 264-270 (1888).
    31.P. Curie, phénomènes physiques les considérations sur
    la symétrie fami-lières aux cristallographes, J. Phys.
    Theor. Appl., 3, 393-415 (1894).
    32.L. D. Landau, E. M. Lifshitz, J. B. Sykes, J. S. Bell,
    E. H. Dill, Electrodynamics of continuous media, 48-50
    (1961).
    33.I. E. Dzyaloshinskii, On the magneto-electrical effect
    in antiferromagnets, Soviet Physics Jetp-Ussr, 10,
    628-629 (1960).
    34.D. N. Astrov, The magnetoelectric effect in
    antiferromagnetics, Sov. Phys. JETP, 11, 708-709
    (1960).
    35.G. T. Rado, V. J. Folen, Observation of the
    magnetically induced magnetoelectric effect and
    evidence for antiferromagnetic domains, Physical
    Review Letters, 7, 310 (1961).
    36.M. Fiebig, Revival of the magnetoelectric effect,
    Journal of Physics D: Applied Physics, 38, R123
    (2005).
    37.R. P. Santoro, R. E. Newnham, Survey of
    magnetoelectric materials, Massachusettsinst of Tech
    Cambridge Lab for Insulation Research (1966).
    38.W. F. Brown Jr, R. M. Hornreich, S. Shtrikman, Upper
    bound on the magnetoelectric susceptibility, Physical
    Review, 168, 574 (1968).
    39.V. Wadhawan, Introduction to ferroic materials, CRC
    press (2000).
    40.G. A. Smolenskiĭ, I. E. Chupis, Ferroelectromagnets,
    Soviet Physics Uspekhi, 25, 475 (1982).
    41.N. A. Hill, Why are there so few magnetic
    ferroelectrics? , J. Phys. Chem. B, 104, 6694-6709
    (2000).
    42.N. Ortega, A. Kumar, J. F. Scott, R. S. Katiyar,
    Multifunctional magnetoelectric materials for device
    applications, Journal of Physics: Condensed Matter,
    27, 504002 (2015).
    43.E. Ascher, H. Rieder, H. Schmid, H. Stössel, Some
    Properties of Ferromagnetoelectric Nickel‐Iodine
    Boracite, Ni3B7O13I, Journal of Applied Physics, 37,
    1404-1405 (1966).
    44.E. F. Bertaut, M. Mercier, Structure magnetique de
    MnYO3, Physics Letters, 5, 27-29 (1963).
    45.N. Ikeda, H. Ohsumi, K. Ohwada, K. Ishii, T. Inami, K.
    Kakurai, Y. Murakami, K. Yoshii, S. Mori, Y. Horibe,
    H. Kito, Ferroelectricity from iron valence ordering
    in the charge-frustrated system LuFe2O4, Nature, 436,
    1136-1138 (2005).
    46.T. Kimura, T. Goto, H. Shintani, K. Ishizaka, T.
    Arima, Y. Tokura, Magnetic control of ferroelectric
    polarization, nature, 426, 55-58 (2003).
    47.B. D. Tellegen, The gyrator, a new electric network
    element, Philips Res. Rep, 3, 81-101 (1948).
    48.J. Van Suchtelen, Product properties: a new
    application of composite materials, Philips Res. Rep,
    27, 28-37 (1972).
    49.J. Van den Boomgaard, D. R. Terrell, R. A. J. Born, H.
    F. J. I. Giller, An in situ grown eutectic
    magnetoelectric composite material, Journal of
    Materials Science, 9, 1705-1709 (1974).
    50.A. M. J. G. Van Run, D. R. Terrell, J. H. Scholing, An
    in situ grown eutectic magnetoelectric composite
    material, Journal of Materials Science, 9, 1710-1714
    (1974).
    51.C. W. Nan, M. I. Bichurin, S. Dong, D. Viehland, G.
    Srinivasan, Multiferroic magnetoelectric composites:
    historical perspective, status, and future directions,
    Journal of Applied Physics, 103, 031101 (2008).
    52.C. W. Nan, Physics of inhomogeneous inorganic
    materials, Progress in Materials Science, 37, 1-116
    (1993).
    53.C. W. Nan, N. Cai, L. Liu, J. Zhai, Y. Ye, Y. Lin,
    Coupled magnetic–electric properties and critical
    behavior in multiferroic particulate composites,
    Journal of applied physics, 94, 5930-5936 (2003).
    54.N. N. Krainik, N. P. Khuchua, V. V. Zhdanova, V. A.
    Esveev, Phase transitions in BiFeO3, Soviet Physics
    Solid State, USSR, 8, 654 (1966).
    55.I. G. Ismailzade, An X-Ray Study of the Phase
    Transitions in Bismuth Ferrite, Soviet Physics
    Doklady, 11, 747 (1967).
    56.C. Ederer, N. A. Spaldin, Weak ferromagnetism and
    magnetoelectric coupling in bismuth ferrite, Physical
    Review B, 71, 060401 (2005).
    57.A. M. Kadomtseva, Y. F. Popov, A. P. Pyatakov, G. P.
    Vorob’ev, A. K. Zvezdin, D. Viehland, Phase
    transitions in multiferroic BiFeO3 crystals, thin-
    layers, and ceramics: enduring potential for a single
    phase, room-temperature magnetoelectric ‘holy grail’,
    Phase Transitions, 79, 1019-1042 (2006).
    58.I. A. Sergienko, E. Dagotto, Role of the
    Dzyaloshinskii-Moriya interaction in multiferroic
    perovskites, Physical Review B, 73, 094434 (2006).
    59.H. Yang, Y. Q. Wang, H. Wang, Q. X. Jia, Oxygen
    concentration and its effect on the leakage current in
    BiFeO3 thin films, Applied Physics Letters, 96, 012909
    (2010).
    60.A. Miszczyk, K. Darowicki, Study of anticorrosion and
    microwave absorption properties of NiZn ferrite
    pigments, Anti-Corrosion Methods and Materials, 58,
    13-21 (2011).
    61.K. E. Sickafus, J. M. Wills, N. W. Grimes, Structure
    of spinel, Journal of the American Ceramic Society,
    82, 3279-3292 (1999).
    62.C. M. Srivastava, G. Srinivasan, N. G. Nanadikar,
    Exchange constants in spinel ferrites, Physical Review
    B, 19, 499 (1979).
    63.General Area Detector Diffraction System (GADDS) User
    Manual, Version 4.1,
    Bruker AXS Inc., USA, 2005.
    64.汪建民,材料分析,中國材料科學學會 (1998)
    65.鮑忠興、劉思謙,近代穿透式電子顯微鏡實務,(2009)
    66.M. Mahesh Kumar, A. Srinivas, S. V. Suryanarayana, G.
    S. Kumar, T. Bhimasankaram, An experimental setup for
    dynamic measurement of magnetoelectric effect,
    Bulletin of Materials Science, 21, 251-255 (1998).
    67.Model SR830 DSP Lock-in amplifier User Manual,
    Stanford Research System Inc. (2011).
    68.S. Z. Lu, X. Qi, Magnetic and dielectric properties of
    nanostructured BiFeO3 prepared by Sol-Gel method, J.
    Am. Ceram. Soc., 97, 2185-2194 (2014).
    69.S. Z. Lu, X. Qi, RF magnetron co-sputtering growth and
    characterisation of multiferroic composite films of
    Ni0.5Zn0.5Fe2O4+BiFeO3, J. of materials Chem. C, 4,
    8679-8686 (2016).
    70.W. J. Lin, W. C. Chang, X. Qi, Exchange bias and
    magneto-resistance in an all-oxide spin valve with
    multi-ferroic BiFeO3 as the pinning layer, Acta
    Materialia, 61, 7444-7453 (2013).
    71.W. J. Lin, X. Qi, G. Chern, Epitaxial growth and
    exchange coupling of spinel ferrimagnet
    Ni0.3Zn0.7Fe2O4 on multiferroic BiFeO3, Thin Solid
    Films, 519, 8326-8329 (2011).
    72.S. Z. Lu, X. Qi, Epitaxial growth of Ni0.5 Zn0.5 Fe2
    O4+ BiFeO3 composite films on SrTiO3 substrates,
    Journal of Alloys and Compounds, 708, 194-201, (2017).
    73.A. Goldman, Modern ferrite technology, Springer
    Science & Business Media, USA (2006).
    74.X. Qi, W. C. Chang, J. C. Kuo, I. G. Chen, Y. C. Chen,
    C. H. Ko, Growth and characterisation of multiferroic
    BiFeO3 films with fully saturated ferroelectric
    hysteresis loops and large remanent polarisations,
    Journal of the European Ceramic Society, 30, 283-287
    (2010).
    75.M. Ohring, Materials Science of Thin Films, second
    ed., p. 382, Academic Press, London (2002).
    76.S. K. Jana, P. Mukhopadhyay, S. Ghosh, S. Kabi, A.
    Bag, R. Kumar, D. Biswas, High-resolution X-ray
    diffraction analysis of AlXGa1−XN/InXGa1−XN/GaN on
    sapphire multilayer structures: Theoretical,
    simulations, and experimental observations, Journal of
    Applied Physics, 115, 174507 (2014).
    77.P. Huang, M. M. A. Kalyar, R. F. Webster, D. Cherns,
    M. N. Ashfold, Tungsten oxide nanorod growth by pulsed
    laser deposition: influence of substrate and process
    conditions, Nanoscale, 6, 13586-13597 (2014).
    78.S. Y. Woo, G. A. Devenyi, S. Ghanad-Tavakoli, R. N.
    Kleiman, J. S. Preston, G. A. Botton, Tilted epitaxy
    on (211)-oriented substrates, Applied Physics Letters,
    102, 132103 (2013).
    79.I. Sosnowska, T. P. Neumaier, E. Steichele, Spiral
    magnetic ordering in bismuth ferrite, Journal of
    Physics C: Solid State Physics, 15, 4835 (1982).
    80.J. A. Mydosh, Spin Glasses: An Experimental
    Introduction, Taylor and Francis, London (1993).
    81.P. A. Joy, P. A. Kumar, S. K. Date, The relationship
    between field-cooled and zero-field-cooled
    susceptibilities of some ordered magnetic systems,
    Journal of Physics: Condensed Matter, 10, 11049
    (1998).
    82.T. J. Park, G. C. Papaefthymiou, A. J. Viescas, A. R.
    Moodenbaugh, S. S. Wong, Size-dependent magnetic
    properties of single-crystalline multiferroic BiFeO3
    nanoparticles, Nano letters, 7, 766-772 (2007).
    83.M. K. Singh, W. Prellier, M. P. Singh, R. S. Katiyar,
    J. F. Scott, Spin-glass transition in single-crystal
    BiFeO3, Physical Review B, 77, 144403 (2008).
    84.R. Mazumder, S. Ghosh, P. Mondal, D. Bhattacharya, S.
    Dasgupta, N. Das,A. Sen, A. K. Tyagi, M. Sivakumar, T.
    Takami, H. Ikuta, Particle size dependence of
    magnetization and phase transition near TN in
    multiferroic BiFeO3, Journal of applied physics, 100,
    033908 (2006).
    85.A. Goldman, Modern ferrite technology, Springer
    Science & Business Media (2006).
    86.X. Qi, P. C. Tsai, Y. C. Chen, Q. R. Lin, W. C. Chang,
    I. G. Chen, Optimal growth windows of multiferroic
    BiFeO3 films and characteristics of ferroelectric
    domain structures, Thin Solid Films, 517, 5862-5866
    (2009).
    87.S. Vijayanand, H. S. Potdar, P. A. Joy, Origin of high
    room temperature ferromagnetic moment of
    nanocrystalline multiferroic BiFeO3, Applied physics
    letters, 94, 182507 (2009).
    88.G. H. der anorganischen Chemie, System-Nummer 19,
    Wismut und Radioaktive Isotope, 8 vollig neu
    bearbeitete Aufl, Verlag Chemie GmbH (1964).
    89.D. K. Mishra, X. Qi, Energy levels and
    photoluminescence properties of nickel-doped bismuth
    ferrite, Journal of Alloys and Compounds, 504, 27-31
    (2010).
    90.P. B. Macedo, C. T. Moynihan, R. Bose, Role of ionic
    diffusion in polarization in vitreous ionic
    conductors, Physics and Chemistry of Glasses, 13, 171-
    179 (1972).
    91.R. Gerhardt, Impedance and dielectric spectroscopy
    revisited: distinguishing localized relaxation from
    long-range conductivity, Journal of Physics and
    Chemistry of Solids, 55, 1491-1506 (1994).
    92.I. M. Hodge, M. D. Ingram, A. R. West, Impedance and
    modulus spectroscopy of polycrystalline solid
    electrolytes, Journal of Electroanalytical Chemistry
    and Interfacial Electrochemistry, 74, 125-143 (1976).
    93.J. Liu, C. G. Duan, W. G. Yin, W. N. Mei, R. W. Smith,
    J. R. Hardy, Dielectric permittivity and electric
    modulus in Bi2Ti4O11, The Journal of chemical physics,
    119, 2812-2819 (2003).
    94.A. K. Jonscher, Dielectric relaxation in solids,
    Journal of Physics D: Applied Physics, 32, R57 (1999).
    95.P. A. Miles, W. B. Westphal, A. Von Hippel, Dielectric
    spectroscopy of ferromagnetic semiconductors, Reviews
    of Modern Physics, 29, 279 (1957).
    96.B. A. Griffiths, D. Elwell, R. Parker, The
    thermoelectric power of the system NiFe2O4-Fe3O4,
    Philosophical Magazine, 22, 163-174 (1970).
    97.W. F. J. Fontijn, P. J. Van der Zaag, L. F. Feiner, R.
    Metselaar, M. A. C. Devillers, A consistent
    interpretation of the magneto-optical spectra of
    spinel type ferrites, Journal of Applied Physics, 85,
    5100-5105 (1999)
    98.W. F. J. Fontijn, P. J. Van der Zaag, M. A. C.
    Devillers, V. A. M. Brabers, R. Metselaar, Optical and
    magneto-optical polar Kerr spectra of Fe3O4 and Mg2+-
    or Al3+-substituted Fe3O4, Physical Review B, 56, 5432
    (1997).
    99.Y. J. Siao, X. Qi, C. R. Lin, J. C. A. Huang,
    Dielectric relaxation and magnetic behavior of
    bismuth-substituted yttrium iron garnet, Journal of
    Applied Physics, 109, 07A508 (2011).
    100.J. Liu, C. G. Duan, W. G. Yin, W. N. Mei, R. W.
    Smith, J. R. Hardy, Large dielectric constant and
    Maxwell-Wagner relaxation in Bi2∕3Cu3Ti4O12, Physical
    review B, 70, 144106 (2004).
    101.A. R. Von Hippel, Dielectrics and waves, New York,
    Wiley (1954).
    102.H. F. Zhang, P. Du, Preparation of Fine-Grained
    Multiferroic BaTiO3-(Ni0.5Zn0.5) Fe2O4 Ceramic
    Composites. Ferroelectrics, 387, 175-183 (2009).
    103.R. F. Zhang, C. Y. Deng, L. Ren, Z. Li, J. P. Zhou,
    The Giant Dielectric Constant and High Initial
    Permeability of BaTiO3-Ni0.5Zn0.5Fe2O4 Composite
    Ceramics, ECS Journal of Solid State Science and
    Technology, 2, N165-N168 (2013).
    104.E. Fertman, S. Dolya, V. Desnenko, L. A. Pozhar, M.
    Kajňaková, A. Feher, Exchange bias in phase-
    segregated Nd2/3Ca1/3MnO3 as a function of
    temperature and cooling magnetic fields, Journal of
    Applied Physics, 115, 203906 (2014).
    105.X. H. Huang, J. F. Ding, G. Q. Zhang, Y. Hou, Y. P.
    Yao, X. G. Li, Size-dependent exchange bias in
    La0.25Ca0.75MnO3 nanoparticles, Physical Review B,
    78, 224408 (2008).
    106.B. Ahmmad, M. Z. Islam, A. Billah, M. A. Basith,
    Anomalous coercivity enhancement with temperature and
    tunable exchange bias in Gd and Ti co-doped BiFeO3
    multiferroics, Journal of Physics D: Applied Physics,
    49, 095001 (2016).
    107.B. Xiao, N. Ma, P. Du, Percolative NZFO/BTO ceramic
    composite with magnetism threshold, Journal of
    Materials Chemistry C, 1, 6325-6334 (2013).
    108.S. Hussain, S. K. Hasanain, G. H. Jaffari, N. Z. Ali,
    M. Siddique, S. I. Shah, Correlation between
    structure, oxygen content and the multiferroic
    properties of Sr doped BiFeO3, Journal of Alloys and
    Compounds, 622, 8-16 (2015).
    109.S. Hussain, S. Khurshid Hasanain, G. Hassnain
    Jaffari, S. Faridi, F. Rehman, T. Ali Abbas, S. Ismat
    Shah, Size and lone pair effects on the multiferroic
    properties of Bi0.75A0.25FeO3− δ(A= Sr, Pb, and Ba)
    ceramics, Journal of the American Ceramic Society,
    96, 3141-3148 (2013).
    110.T. J. Park, G. C. Papaefthymiou, A. J. Viescas, Y.
    Lee, H. Zhou, H. S. S. Wong, Composition-dependent
    magnetic properties of BiFeO3-BaTiO3 solid solution
    nanostructures, Physical Review B, 82, 024431 (2010).
    111.A. J. Rondinone, A. C. Samia, Z. J. Zhang,
    Superparamagnetic relaxation and magnetic anisotropy
    energy distribution in CoFe2O4 spinel ferrite
    nanocrystallites, The Journal of Physical Chemistry
    B, 103, 6876-6880 (1999).
    112.T. L. Qu, Y. G. Zhao, P. Yu, H. C. Zhao, S. Zhang, L.
    F. Yang, Exchange bias effects in epitaxial
    Fe3O4/BiFeO3 heterostructures, Applied Physics
    Letters, 100, 242410 (2012).
    113.N. Moutis, C. Christides, I. Panagiotopoulos, D.
    Niarchos, Exchange-coupling properties of
    La1−xCaxMnO3 ferromagnetic/antiferromagnetic
    multilayers, Physical Review B, 64, 094429 (2001).
    114.J. F. Ding, O. I. Lebedev, S. Turner, Y. F. Tian, W.
    J. Hu, J. W. Seo, C. Panagopoulos, W. Prellier, G.
    Van Tendeloo, T. Wu, Interfacial spin glass state and
    exchange bias in manganite bilayers with competing
    magnetic orders, Physical Review B, 87, 054428
    (2013).
    115.A. P. Malozemoff, Mechanisms of exchange anisotropy,
    Journal of Applied Physics, 63, 3874-3879 (1988).
    116.N. N. Phuoc, T. Suzuki, Mechanism of blocking
    temperature difference for parallel and perpendicular
    exchange biases in FePt/FeMn multilayers, IEEE
    transactions on magnetics, 43, 897-899 (2007).
    117.A. Goldman, Modern ferrite technology, Springer
    Science & Business Media (2006).
    118.M. Zhang, Z. Zi, Q. Liu, P. Zhang, X. Tang, J. Yang,
    X. Zhu, Y. Sum, J. Dai, Size Effects on Magnetic
    Properties of Prepared by Sol-Gel Method, Advances in
    Materials Science and Engineering, 2013 (2013).
    119.D. Craik, Magnetism: Principles and Applications,
    John Wiley & Sons, West Sussex, England (1995).
    120.S. Chikazumi, C. D. Graham, Physics of Ferromagnetism
    2e, Oxford University Press on Demand (2009).
    121.H. B. Callen, E. Callen, The present status of the
    temperature dependence of magnetocrystalline
    anisotropy, and the l(l+1)2 power law, Journal of
    Physics and Chemistry of Solids, 27, 1271-1285
    (1966).
    122.S. K. Mandal, G. Sreenivasulu, V. M. Petrov, G.
    Srinivasan, Flexural deformation in a compositionally
    stepped ferrite and magnetoelectric effects in a
    composite with piezoelectrics, Applied Physics
    Letters, 96, 192502 (2010).
    123.P. Niemiec, D. Bochenek, A. Chrobak, P. Guzdek, A.
    Błachowski, Ferroelectric–ferromagnetic ceramic
    composites based on PZT with added ferrite,
    International Journal of Applied Ceramic Technology,
    12 (2015).
    124.P. Guzdek, The magnetostrictive and magnetoelectric
    characterization of Ni0.3Zn0.62 Cu0.08Fe2O4–
    Pb(FeNb)0.5O3 laminated composite, Journal of
    Magnetism and Magnetic Materials, 349, 219-223
    (2014).
    125.J. Kulawik, D. agierczak, P. dek, Magnetic,
    magnetoelectric and dielectric behavior of CoFe2O4–
    Pb(Fe1/2Nb1/2)O3 particulate and layered composites,
    Journal of magnetism and magnetic materials, 324,
    3052-3057 (2012).
    126.M. Szklarska-Łukasik, P. Guzdek, M. Dudek, A.
    Pawlaczyk, J. Chmist, W. Dorowski, J. Pszczoła,
    Magnetoelectric properties of Tb0.27−xDy0.73−yYx+yFe2
    /PVDF composites, Journal of Alloys and Compounds,
    549, 276-282 (2013).

    無法下載圖示
    校外:不公開
    電子論文及紙本論文均尚未授權公開
    QR CODE