| 研究生: |
傅俊銘 Fu, Chun-Ming |
|---|---|
| 論文名稱: |
PIN1對熱休克反應的調控對亨丁頓包涵體的影響 PIN1-mediated Heat Shock Response Can Modulate Aggregation in Huntington’s Disease |
| 指導教授: |
呂佩融
Lu, Pei-Jung 陳明晟 Calkins, Marcus J |
| 學位類別: |
碩士 Master |
| 系所名稱: |
醫學院 - 臨床醫學研究所 Institute of Clinical Medicine |
| 論文出版年: | 2016 |
| 畢業學年度: | 104 |
| 語文別: | 英文 |
| 論文頁數: | 78 |
| 中文關鍵詞: | 亨丁頓舞蹈症 、PIN1 、HSF1 、HSR 、集合體 、包涵體 |
| 外文關鍵詞: | huntington’s disease, PIN1, HSF1, HSR, aggregate, inclusion body |
| 相關次數: | 點閱:69 下載:3 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
亨丁頓舞蹈症是一個體染色體顯性遺傳的神經退化性疾病,目前臨床上無有效改善病程的藥物。亨丁頓舞蹈症的基因突變為4號染色體亨丁頓基因異常CAG序列異常的擴展,造成含聚谷氨酸鏈的突變亨丁頓蛋白。突變的亨丁頓蛋白可形成不可融且對神經有毒性的寡聚物、聚合物、集合體。神經毒性的機轉包括干擾基因轉錄、增加粒線體壓力以及降低蛋白酶體降解系統功能。熱休克效應可藉由將構型不正常的亨丁頓蛋白從型折疊而保護,並能減少突變亨丁頓蛋白形成集合體。PIN1蛋白使一個在神經細胞內含量豐富的正反異構酶並已知參與在多種細胞訊息傳遞中。我的研究結果顯示PIN1能藉由調控HSF1增加熱休克反應活性進而減少亨丁頓集合體。 在我的計畫中,我發現PIN1能和HSF1有交互作用,在HSF1的轉錄活性扮演重要的角色,並能增加熱休克蛋白的表現。在SHSY5Y及初級神經細胞中,PIN1在熱休克的環境下能降低亨丁頓包涵體及集合體的量。在PIN1基因剔除鼠的初級神經培養實驗中,PIN1的量和熱休克蛋白的表現量呈正向關係,並和集合體的量呈反向關係。在老鼠的動物實驗中,PIN1蛋白合併熱休克反應時能降低老鼠紋狀體內亨丁頓集合體的量,然而單獨調節PIN1蛋白並不足對集合體產生影響。我的發現顯示PIN1蛋白對於HSF1調控的亨丁頓集合體減少具有不可或缺的角色。
Huntington’s disease (HD) is an autosomal dominant, progressive neurodegenerative disorder with no current drug treatment that can effectively modify disease progression. The mutation that causes HD is an expansion of CAG repeats that codes for an abnormal polyglutamine (polyQ) tract in the huntingtin protein (Htt). Mutant Htt can form oligomers, polymers and large aggregates which are insoluble and toxic to neurons through interference with gene transcription, enhanced mitochondrial stress and dysfunction of the proteasome degradation system. Heat shock response (HSR) can protect cells from mutant Htt by refolding misfolded proteins and reducing the ability of mutant Htt to aggregate. PIN1 is an abudundant cis-trans isomerase in neurons that is known to participate in many cell signaling processes. In my project, I found that PIN1 can interact with HSF1, which is crucial for HSF1 tramsactivation and thus enhance key chaperon proteins expression attributed to HSR. Modulation PIN1 in SHSY5Y and cortical primary neuron under heat shock circumstances can interfere amount of aggregates and inclusion bodies. PIN1(+/+)、(+/-),(-/-) primary neuron result showed that PIN1 level is poositive correlated with chaperon protein expression and is negative related to aggregates level. In mouse model, I illustrate that PIN1 manipulation only has little effect on aggregates level, while PIN1 combined with HSF1 activation can decrease mutant Htt aggregates burden. My finding reveal that PIN1 is indispensable for HSF1-mediated Htt aggregates reduction.
1. Almqvist, E.W., et al., High incidence rate and absent family histories in one quarter of patients newly diagnosed with Huntington disease in British Columbia. Clin. Genet., 2001. 60: p. 198-205.
2. Evans, S.J.W., Prevalence of adult Huntington's disease in the UK based on diagnoses recorded in general practice records. J. Neurol. Neurosurg. Psychiatry, 2013. 84: p. 1156-1160.
3. Fisher, E.R. and M.R. Hayden, Multisource ascertainment of Huntington disease in Canada: prevalence and population at risk. Mov. Disord., 2014. 29: p. 105-114.
4. Huntington, G., On chorea. Med. Surg. Rep., 1872. 26: p. 320-321.
5. Morrison, P.J., S. Harding-Lester, and A. Bradley, Uptake of Huntington disease predictive testing in a complete population. Clin. Genet., 2011. 80: p. 281-286.
6. Kay, C., et al., M. R. in Huntington’s Disease 4th edITION, ed. Ch.7. 2014: Oxford Univ. Press.
7. Jayaraman, M., Slow amyloid nucleation via α-helix-rich oligomeric intermediates in short polyglutamine-containing huntingtin fragments. J. Mol. Biol., 2012. 415: p. 881-999.
8. Chen, S., et al., Polyglutamine aggregation behavior in vitro supports a recruitment mechanism of cytotoxicity. J. Mol. Biol., 2001. 311: p. 173-182.
9. Morley, J.F., et al., The threshold for polyglutamine-expansion protein aggregation and cellular toxicity is dynamic and influenced by aging in Caenorhabditis elegans. Proc. Natl Acad. Sci. Usa, 2002. 99: p. 10417-10422.
10. Scherzinger, E., Self-assembly of polyglutamine-containing huntingtin fragments into amyloid-like fibrils: implications for Huntington disease pathology. Proc. Natl Acad. Sci. Usa, 1999. 96: p. 4604-4609.
11. Sathasivam, K., et al., Aberrant splicing of HTT generates the pathogenic exon 1 protein in Huntington disease. Proc Natl Acad Sci U S A, 2013. 110(6): p. 2366-70.
12. Wetzel R., M.R., Structural biology: Order, disorder, and conformational flux. in Huntington's Disease. 2014: Oxford University Press, Oxford, UK.
13. Ellrichmann, G., et al., The role of the immune system in Huntington's disease. Clin. Dev. Immunol., 2013. 2013: p. 541259.
14. Hughes, A., et al., in Huntington’s Disease. 2014: Oxford Univ. Press. 323-369.
15. Johri, A., A. Chandra, and M.F. Beal, PGC-1α, mitochondrial dysfunction, and Huntington's disease. Free Radic. Biol. Med., 2013. 62: p. 37-46.
16. Kim, M., Mutant huntingtin expression in clonal striatal cells: dissociation of inclusion formation and neuronal survival by caspase inhibition. J. Neurosci., 1999. 19: p. 964-973.
17. Nithianantharajah, J. and A.J. Hannan, Dysregulation of synaptic proteins, dendritic spine abnormalities and pathological plasticity of synapses as experience-dependent mediators of cognitive and psychiatric symptoms in Huntington's disease. Neuroscience, 2013. 251: p. 66-74.
18. Reddy, P.H. and U.P. Shirendeb, Mutant huntingtin, abnormal mitochondrial dynamics, defective axonal transport of mitochondria, and selective synaptic degeneration in Huntington's disease. Biochim. Biophys. Acta, 2012. 1822: p. 101-110.
19. Seredenina, T. and R. Luthi-Carter, What have we learned from gene expression profiles in Huntington's disease? Neurobiol. Dis., 2012. 45: p. 83-98.
20. Vidal, R., et al., Converging pathways in the occurrence of endoplasmic reticulum (ER) stress in Huntington's disease. Curr. Mol. Med., 2011. 11: p. 1-12.
21. Dorsey, E.R., Natural history of Huntington disease. Jama Neurol., 2013. 70: p. 1520-1530.
22. Ross, C.A., Huntington disease: natural history, biomarkers and prospects for therapeutics. Nat. Rev. Neurol., 2014. 10: p. 204-216.
23. Coenzyme Q10 in Huntington disease. Huntingdon Study Group [online]. 2014; Available from: http://www.huntington- studygroup.org/CurrentHSGClinicalTrials/
2CARE/ tabid/95/Default.aspx.
24. Announcement of CREST‑E early study group. Huntingdon Study Group [online]. 2014.
25. Reilmann, R., Safety and tolerability of selisistat for the treatment of Huntington's disease: results from a randomized, double-blind, placebo-controlled Phase II trial (S47.004). Neurology, 2014. 82: p. S47.004.
26. Sussmuth, S.D., et al., An exploratory double-blind, randomized clinical trial with selisistat, a SirT1 inhibitor, in patients with Huntington's disease. Br J Clin Pharmacol, 2015. 79(3): p. 465-76.
27. Pharmaceuticals, R., Raptor announces clinical results with rp103 in Huntington’s disease Phase 2/3 trial [online]. 2014.
28. Safety and efficacy of OMS643762 in subjects with Huntington’s disease. [online]. 2014.
29. Giampà, C., Inhibition of the striatal specific phosphodiesterase PDE10A ameliorates striatal and cortical pathology in R6/2 mouse model of Huntington disease. P Lo S One, 2010. 5: p. e13417.
30. Tabrizi, S.J., Huntingtin lowering as a treatment for Huntington’s disease. European Huntington’s Disease Network Plenary Meeting, 2014.
31. A clinical study in subjects with Huntington’s disease to assess the efficacy and safety of three oral doses of laquinimod. [online]. 2014; Available from: https://clinicaltrials.gov/ct2/show/NCT02215616.
32. Hockly, E., Suberoylanilide hydroxamic acid, a histone deacetylase inhibitor, ameliorates motor deficits in a mouse model of Huntington's disease. Proc. Natl Acad. Sci. Usa, 2003. 100: p. 2041-2046.
33. Simpson, S.A. and D. Rae, A standard of care for Huntington's disease: who, what and why. Neurodegener. Dis. Manag., 2012. 2: p. 1-5.
34. Chafekar, S.M. and M.L. Duennwald, Impaired heat shock response in cells expressing full-length polyglutamine-expanded huntingtin. PLoS One, 2012. 7(5): p. e37929.
35. Labbadia, J., Altered chromatin architecture underlies progressive impairment of the heat shock response in mouse models of Huntington disease. J. Clin. Invest., 2011. 121: p. 3306-3319.
36. Sittler, A., et al., Geldanamycin activates a heat shock response and inhibits huntingtin aggregation in a cell culture model of Huntington's disease. Hum Mol Genet, 2001. 10(12): p. 1307-15.
37. Warrick, J.M., et al., Suppression of polyglutamine-mediated neurodegeneration in Drosophila by the molecular chaperone HSP70. Nat Genet, 1999. 23(4): p. 425-8.
38. Fujimoto, M., et al., Active HSF1 significantly suppresses polyglutamine aggregate formation in cellular and mouse models. J Biol Chem, 2005. 280(41): p. 34908-16.
39. Neef, D.W., M.L. Turski, and D.J. Thiele, Modulation of heat shock transcription factor 1 as a therapeutic target for small molecule intervention in neurodegenerative disease. PLoS Biol, 2010. 8(1): p. e1000291.
40. Das, S. and N.P. Bhattacharyya, Heat Shock Factor 1-Regulated miRNAs Can Target Huntingtin and Suppress Aggregates of Mutant Huntingtin. Microrna, 2015. 4(3): p. 185-93.
41. Powers, E.T., et al., Biological and chemical approaches to diseases of proteostasis deficiency. Annu Rev Biochem, 2009. 78: p. 959-91.
42. Hartl, F.U. and M. Hayer-Hartl, Molecular chaperones in the cytosol: from nascent chain to folded protein. Science, 2002. 295: p. 1852-1858.
43. Chai, Y., et al., Analysis of the role of heat shock protein (Hsp) molecular chaperones in polyglutamine disease. J. Neurosci., 1999. 19: p. 10338-10347.
44. Chan, H.Y., et al., Mechanisms of chaperone suppression of polyglutamine disease: selectivity, synergy and modulation of protein solubility in Drosophila. Hum. Mol. Genet., 2000. 9: p. 2811-2820.
45. Satyal, S.H., Polyglutamine aggregates alter protein folding homeostasis in Caenorhabditis elegans. Proc. Natl Acad. Sci. USA, 2000. 97: p. 5750-5755.
46. Lanneau, D., et al., Apoptosis versus cell differentiation: role of heat shock proteins HSP90, HSP70 and HSP27. Prion, 2007. 1: p. 53-60.
47. Akerfelt, M., R.I. Morimoto, and L. Sistonen, Heat shock factors: integrators of cell stress, development and lifespan. Nature Rev. Mol. Cell Biol., 2010. 11: p. 545-555.
48. Guo, Y., Evidence for a mechanism of repression of heat shock factor 1 transcriptional activity by a multichaperone complex. J. Biol. Chem., 2001. 276: p. 45791-45799.
49. Shi, Y., D.D. Mosser, and R.I. Morimoto, Molecular chaperones as HSF1-specific transcriptional repressors. Genes Dev., 1998. 12: p. 654-666.
50. Pelham, H.R., A regulatory upstream promoter element in the Drosophila Hsp 70 heat-shock gene. Cell, 1982. 30: p. 517-528.
51. Pelham, H.R. and M. Bienz, A synthetic heat-shock promoter element confers heat-inducibility on the herpes simplex virus thymidine kinase gene. EMBO J., 1982. 1: p. 1473-1477.
52. Perisic, O., H. Xiao, and J.T. Lis, Stable binding of Drosophila heat shock factor to head-to-head and tail-to-tail repeats of a conserved 5 bp recognition unit. Cell, 1989. 59: p. 797-806.
53. Guettouche, T., et al., Analysis of phosphorylation of human heat shock factor 1 in cells experiencing a stress. BMC Biochem., 2005. 6: p. 4.
54. Agrawal, N., Identification of combinatorial drug regimens for treatment of Huntington's disease using Drosophila. Proc. Natl Acad. Sci. USA, 2005. 102: p. 3777-3781.
55. Fujikake, N., Heat shock transcription factor 1-activating compounds suppress polyglutamine-induced neurodegeneration through induction of multiple molecular chaperones. J. Biol. Chem., 2008. 283: p. 26188-26197.
56. Hay, D.G., Progressive decrease in chaperone protein levels in a mouse model of Huntington's disease and induction of stress proteins as a therapeutic approach. Hum. Mol. Genet., 2004. 13: p. 1389-1405.
57. Fakhouri, W.D., et al., An etiologic regulatory mutation in IRF6 with loss- and gain-of-function effects. Hum Mol Genet, 2014. 23(10): p. 2711-20.
58. Lu, K.P., Pinning down cell signaling, cancer and Alzheimer's disease. Trends Biochem. Sci., 2004. 29: p. 200-209.
59. Lu, K.P., S.D. Hanes, and T. Hunter, A human peptidyl-prolyl isomerase essential for regulation of mitosis. Nature, 1996. 380: p. 544-547.
60. Ranganathan, R., et al., Structural and functional analysis of the mitotic peptidyl-prolyl isomerase Pin1 suggests that substrate recognition is phosphorylation dependent. Cell, 1997. 89: p. 875-886.
61. Yaffe, M.B., Sequence-specific and phosphorylation-dependent proline isomerization: a potential mitotic regulatory mechanism. Science, 1997. 278: p. 1957-1960.
62. Pawson, T. and J.D. Scott, Protein phosphorylation in signaling--50 years and counting. Trends Biochem. Sci., 2005. 30: p. 286-290.
63. Lu, P.J., et al., A function of WW domains as phosphoserine- or phosphothreonine-binding modules. Science, 1999. 283: p. 1325-1328.
64. Okamoto, K. and N. Sagata, Mechanism for inactivation of the mitotic inhibitory kinase Wee1 at M phase. Proc. Natl Acad. Sci., 2007. 104: p. 3753-3758.
65. Zhou, X.Z., Pin1-dependent prolyl isomerization regulates dephosphorylation of Cdc25C and tau proteins. Mol., 2000. 6: p. 873-883.
66. Xu, Y.X. and J.L. Manley, The prolyl isomerase pin1 functions in mitotic chromosome condensation. Mol. Cell, 2007. 26: p. 287-300.
67. Peng, T., et al., Sequence-specific dynamics modulate recognition specificity in WW domains. Nature Struct. Mol. Biol., 2007. 14: p. 325-331.
68. Hamdane, M., et al., Pin1 allows for differential Tau dephosphorylation in neuronal cells. Molecular and Cellular Neuroscience, 2006. 32(1-2): p. 155-160.
69. Zhou, X.Z., et al., Pin1-dependent prolyl isomerization regulates dephosphorylation of Cdc25C and tau proteins. Molecular Cell, 2000. 6(4): p. 873-883.
70. Pastorino, L., et al., The prolyl isomerase Pin1 regulates amyloid precursor protein processing and amyloid-beta production. Nature, 2006. 440(7083): p. 528-534.
71. Moretto Zita, M., Post-phosphorylation prolyl isomerisation of gephyrin represents a mechanism to modulate glycine receptors function. EMBO J., 2007. 26: p. 1761-1771.
72. Li, Q.M., Activation of JNK3 after injury induces cytochrome C release by facilitating Pin1-dependent degradation of Mcl-1. J. Neurosci., 2007. 27: p. 8395-8404.
73. Hamdane, M., Pin1 allows for differential Tau dephosphorylation in neuronal cells. Mol. Cell. Neurosci., 2006. 32: p. 155-160.
74. Kipping, M., Increased backbone flexibility in threonine45-phosphorylated hirudin upon pH change. Biochemistry, 2001. 40: p. 7957-7963.
75. Liou, Y.C., Role of the prolyl isomerase Pin1 in protecting against age-dependent neurodegeneration. Nature, 2003. 424: p. 556-561.
76. Ryo, A., et al., Prolyl-isomerase Pin1 accumulates in Lewy bodies of Parkinson disease and facilitates formation of alpha-synuclein inclusions. Journal of Biological Chemistry, 2006. 281(7): p. 4117-4125.
77. Mantovani, F., et al., Pin1 links the activities of c-Abl and p300 in regulating p73 function. Molecular Cell, 2004. 14(5): p. 625-636.
78. Wulf, G.M., et al., Role of Pin1 in the regulation of p53 stability and p21 transactivation, and cell cycle checkpoints in response to DNA damage. J. Biol. Chem., 2002. 277: p. 47976-47979.
79. Zacchi, P., et al., The prolyl isomerase Pin1 reveals a mechanism to control p53 functions after genotoxic insults. Nature, 2002. 419(6909): p. 853-857.
80. Zheng, H.W., et al., The prolyl isomerase Pin1 is a regulator of p53 in genotoxic response. Nature, 2002. 419(6909): p. 849-853.
81. Brenkman, A.B., et al., The peptidyl-isomerase Pin1 regulates p27(kip1) expression through inhibition of Forkhead box O tumor suppressors. Cancer Research, 2008. 68(18): p. 7597-7605.
82. Ryo, A., et al., A suppressive role of the prolyl isomerase Pin1 in cellular apoptosis mediated by the death-associated protein Daxx. Journal of Biological Chemistry, 2007. 282(50): p. 36671-36681.
83. Blume-Jensen, P. and T. Hunter, Oncogenic kinase signalling. Nature, 2001. 411: p. 355-365.
84. Calkins, M.J., et al., Protection from mitochondrial complex II inhibition in vitro and in vivo by Nrf2-mediated transcription. Proc Natl Acad Sci U S A, 2005. 102(1): p. 244-9.
85. Mangiarini, L., et al., Exon 1 of the HD gene with an expanded CAG repeat is sufficient to cause a progressive neurological phenotype in transgenic mice. Cell, 1996. 87(3): p. 493-506.
86. Atchison, F.W., B. Capel, and A.R. Means, Pin1 regulates the timing of mammalian primordial germ cell proliferation. Development, 2003. 130(15): p. 3579-86.
87. Teuling, E., et al., Modifiers of mutant huntingtin aggregation: functional conservation of C. elegans-modifiers of polyglutamine aggregation. PLoS Curr, 2011. 3: p. Rrn1255.
88. Scotter, E.L., et al., High throughput quantification of mutant huntingtin aggregates. J Neurosci Methods, 2008. 171(1): p. 174-9.
89. Calkins, M.J., et al., Astrocyte-specific overexpression of Nrf2 protects striatal neurons from mitochondrial complex II inhibition. Toxicol Sci, 2010. 115(2): p. 557-68.
90. Shiber, A. and T. Ravid, Chaperoning Proteins for Destruction: Diverse Roles of Hsp70 Chaperones and their Co-Chaperones in Targeting Misfolded Proteins to the Proteasome. Biomolecules, 2014. 4(3): p. 704-724.
91. Guettouche, T., et al., Analysis of phosphorylation of human heat shock factor 1 in cells experiencing a stress. BMC Biochem, 2005. 6: p. 4.
92. Ranganathan, R., et al., Structural and functional analysis of the mitotic rotamase Pin1 suggests substrate recognition is phosphorylation dependent. Cell, 1997. 89(6): p. 875-86.
93. Lu, P.J., et al., Function of WW domains as phosphoserine- or phosphothreonine-binding modules. Science, 1999. 283(5406): p. 1325-8.
94. Pirkkala, L., P. Nykanen, and L. Sistonen, Roles of the heat shock transcription factors in regulation of the heat shock response and beyond. Faseb j, 2001. 15(7): p. 1118-31.
95. Maheshwari, M., et al., Dexamethasone induces heat shock response and slows down disease progression in mouse and fly models of Huntington's disease. Hum Mol Genet, 2014. 23(10): p. 2737-51.
96. Nowakowski, G.S., A phase I trial of twice-weekly 17-allylamino-demethoxy-geldanamycin in patients with advanced cancer. Clin. Cancer Res., 2006. 12: p. 6087-6093.
97. Hennig, L., et al., Selective inactivation of parvulin-like peptidyl-prolyl cis/trans isomerases by juglone. Biochemistry, 1998. 37(17): p. 5953-60.
98. Chao, S.-H., A.L. Greenleaf, and D.H. Price, Juglone, an inhibitor of the peptidyl-prolyl isomerase Pin1, also directly blocks transcription. Nucleic Acids Research, 2001. 29(3): p. 767-773.
99. Liou, Y.C., X.Z. Zhou, and K.P. Lu, Prolyl isomerase Pin1 as a molecular switch to determine the fate of phosphoproteins. Trends Biochem Sci, 2011. 36(10): p. 501-14.
100. Lu, P.J., et al., The prolyl isomerase Pin1 restores the function of Alzheimer-associated phosphorylated tau protein. Nature, 1999. 399(6738): p. 784-788.
101. Ali, A., et al., HSP90 interacts with and regulates the activity of heat shock factor 1 in Xenopus oocytes. Molecular and Cellular Biology, 1998. 18(9): p. 4949-4960.
102. Boellmann, F., et al., DAXX interacts with heat shock factor 1 during stress activation and enhances its transcriptional activity. Proceedings of the National Academy of Sciences of the United States of America, 2004. 101(12): p. 4100-4105.
103. Dai, Q., et al., CHIP activates HSF1 and confers protection against apoptosis and cellular stress. Embo Journal, 2003. 22(20): p. 5446-5458.
104. Lu, K.P., S.D. Hanes, and T. Hunter, A human peptidyl-prolyl isomerase essential for regulation of mitosis. Nature, 1996. 380(6574): p. 544-547.
105. Lu, P.J., et al., The prolyl isomerase Pin1 restores the function of Alzheimer-associated phosphorylated tau protein. Nature, 1999. 399: p. 784-788.
106. Liou, Y.C., et al., Role of the prolyl isomerase Pin1 in protecting against age-dependent neurodegeneration. Nature, 2003. 424(6948): p. 556-561.
107. Jolly, C., et al., In vivo binding of active heat shock transcription factor 1 to human chromosome 9 heterochromatin during stress. Journal of Cell Biology, 2002. 156(5): p. 775-781.
108. Jolly, C., et al., Stress-induced transcription of satellite III repeats. Journal of Cell Biology, 2004. 164(1): p. 25-33.
109. Jackrel, M.E. and J. Shorter, Shock and awe: unleashing the heat shock response to treat Huntington disease. The Journal of Clinical Investigation, 2011. 121(8): p. 2972-2975.
110. Arrasate, M., et al., Inclusion body formation reduces levels of mutant huntingtin and the risk of neuronal death. Nature, 2004. 431: p. 805-810.
111. Bates, G.P., et al., Huntington disease. Nature Reviews Disease Primers, 2015. 1: p. 15005.
112. Hackam, A.S., et al., Evidence for both the nucleus and cytoplasm as subcellular sites of pathogenesis in Huntington's disease in cell culture and in transgenic mice expressing mutant huntingtin. Philosophical Transactions of the Royal Society B: Biological Sciences, 1999. 354(1386): p. 1047-1055.
113. Bates, G., Huntingtin aggregation and toxicity in Huntington's disease. Lancet, 2003. 361(9369): p. 1642-4.
114. Chen, S., F.A. Ferrone, and R. Wetzel, Huntington's disease age-of-onset linked to polyglutamine aggregation nucleation. Proc Natl Acad Sci U S A, 2002. 99(18): p. 11884-9.
115. DiFiglia, M., et al., Aggregation of Huntingtin in Neuronal Intranuclear Inclusions and Dystrophic Neurites in Brain. Science, 1997. 277(5334): p. 1990-1993.
116. Li, H., et al., Huntingtin aggregate-associated axonal degeneration is an early pathological event in Huntington's disease mice. J Neurosci, 2001. 21(21): p. 8473-81.
117. Morton, A.J., et al., Paradoxical delay in the onset of disease caused by super-long CAG repeat expansions in R6/2 mice. Neurobiol Dis, 2009. 33(3): p. 331-41.
118. Arrasate, M., et al., Inclusion body formation reduces levels of mutant huntingtin and the risk of neuronal death. Nature, 2004. 431(7010): p. 805-10.
119. Takahashi, T., et al., Soluble polyglutamine oligomers formed prior to inclusion body formation are cytotoxic. Hum Mol Genet, 2008. 17(3): p. 345-56.
120. Bennett, E.J., et al., Global impairment of the ubiquitin-proteasome system by nuclear or cytoplasmic protein aggregates precedes inclusion body formation. Mol Cell, 2005. 17(3): p. 351-65.
121. Wang, J., et al., Impaired ubiquitin-proteasome system activity in the synapses of Huntington's disease mice. J Cell Biol, 2008. 180(6): p. 1177-89.
122. Wacker, J.L., et al., Hsp70 and Hsp40 attenuate formation of spherical and annular polyglutamine oligomers by partitioning monomer. Nat Struct Mol Biol, 2004. 11(12): p. 1215-22.
123. Bjørkøy, G., et al., p62/SQSTM1 forms protein aggregates degraded by autophagy and has a protective effect on huntingtin-induced cell death. The Journal of Cell Biology, 2005. 171(4): p. 603-614.
124. Pastorino, L., The prolyl isomerase Pin1 regulates amyloid precursor protein processing and amyloid-b production. Nature, 2006. 440: p. 528-534.
125. Sultana, R., et al., Oxidative modification and down-regulation of Pin1 in Alzheimer's disease hippocampus: A redox proteomics analysis. Neurobiology of Aging, 2006. 27(7): p. 918-925.
126. Sander, J.D. and J.K. Joung, CRISPR-Cas systems for editing, regulating and targeting genomes. Nat Biotech, 2014. 32(4): p. 347-355.
127. Tu, Z., et al., CRISPR/Cas9: a powerful genetic engineering tool for establishing large animal models of neurodegenerative diseases. Mol Neurodegener, 2015. 10: p. 35.
128. Balch, W.E., et al., Adapting proteostasis for disease intervention. Science, 2008. 319: p. 916-919.
129. Dai, C., et al., Heat shock factor 1 is a powerful multifaceted modifier of carcinogenesis. Cell, 2007. 130: p. 1005-1018.
130. Liou, Y.C., et al., Loss of Pin1 function in the mouse causes phenotypes resembling cyclin D1-null phenotypes. Proceedings of the National Academy of Sciences of the United States of America, 2002. 99(3): p. 1335-1340.
131. Ryo, A., et al., Pin1 regulates turnover and subcellular localization of [beta]-catenin by inhibiting its interaction with APC. Nature Cell Biol., 2001. 3: p. 793-801.