簡易檢索 / 詳目顯示

研究生: 葉則易
Yeh, Ze-Yi
論文名稱: EMIBF4 / LiBF4雙成分系統導電度之分子模擬
Molecular Simulations of the Conductivities in EMIBF4 / LiBF4 Binary System
指導教授: 施良垣
Shy, Liang-Yuan
學位類別: 碩士
Master
系所名稱: 理學院 - 化學系
Department of Chemistry
論文出版年: 2006
畢業學年度: 94
語文別: 中文
論文頁數: 89
中文關鍵詞: 離子群配位比導電度
外文關鍵詞: specific conductivity, cluster, coordination
相關次數: 點閱:142下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  •   本篇以分子動力模擬的方法,討論溫度(313、343 K)與LiBF4濃度(0、1.0、1.5與2.0 M)之改變對於EMIBF4 /LiBF4混合液之離子導電性、配位與結合之影響。首先由均方位移圖求得物種H、Li+與F之擴散係數,並由Nernst-Einstein公式與自由離子機率計算比導電度。再由徑向分佈函數圖探討離子間的交互作用力,並了解其配位與集結之情形。

      由模擬結果可知,擴散係數與比導電度值隨LiBF4濃度的增加而遞減,且隨溫度的升高而遞增,與實驗結果相符。與EMI+之酸性氫原子形成氫鍵之BF4-之氟原子數,在溫度313 K時約為2.23~2.36,視LiBF4濃度而定。其值隨溫度之增加而遞減。

      EMI+質心與Li+周圍之BF4-離子配位數,在313 K、1.0 M時,分別為8.27與2.77,其值隨濃度而遞增。溫度的增加有利於Li+周圍之BF4-離子之配位,但對於EMI+離子幾乎沒有影響。溶液中形成各式各樣的離子群,如單體(Li+、EMI+或BF4-)、雙體(LiBF4或EMIBF4),三體([Li(BF4)2]-、[EMI(BF4)2]-、[Li(EMI)(BF4)]+、 [Li2BF4]+、或[(EMI)2BF4]+)等,其比率隨濃度與溫度之變化可經由本模擬求得。

      Molecular dynamic simulation method has been employed to study the influences of the temperature(313, 343 K)and LiBF4 concentration(0, 1.0, 1.5, 2.0 M)on the ionic conductivity, coordination and association of the EMIBF4/LiBF4 binary system. The diffusion coefficients of the species H, F, Li+ were computed firstly from the plot of the mean-squared displacement. With the aid of Nernst-Einstein equation and the calculated free ion probability, the specific conductivity of the system was estimated. The radial distribution functions were then analyzed to understand the ionic interaction, coordination and aggregation within the system.

      It’s known from the simulation that the diffusion coefficient and specific conductivity decreases with the increasing LiBF4 concentration and decreasing temperature, which is in accord with experiment. The number of the hydrogen-bond forming F atoms of BF4- around the acidic hydrogen atom of EMI+ is between 2.23 and 2.36 at 313 K, depending on concentration. The number decreases with the increasing temperature.

      At 313 K and 1.0 M, the number of coordinating BF4- anions around Li+and EMI+ cation is 2.77 and 8.27, respectively. The coordination number increases with the increment of LiBF4 concentration. The increase of temperature facilitates the coordination of BF4- around Li+, but has virturally no effect for EMI+. Various forms of ionic clusters were found in the solution, such as monomer(Li+, EMI+, BF4-), dimmer(LiBF4, EMIBF4), trimer([Li(BF4)2]-, [EMI(BF4)2]-, [Li(EMI)(BF4)]+, [Li2BF4]+ or [(EMI)2BF4]+), etc. The variations of their fractions with LiBF4 concentration and temperature were obtained from the present simulation.

    摘 要..................................I Abstract................................II 目 錄..................................IV 圖目錄..................................V 表目錄..................................VII 第一章 緒 論..........................1 第二章 電腦模擬........................8 2-1 分子動力模擬原理(Molecular Dynamic,MD)....................................8 2-2 分子動力模擬計算................9 2-3 分子動力模擬方法................12 2-4 力場............................14 2-5 模擬條件........................17 2-6 相關數據的計算方式..............19 第三章 實驗結果與討論..................24 3-1 擴散係數與比導電度...............24 (A)擴散係數........................24 (B)比導電度........................35 3-2 配 位...........................38 (A)EMI+之H2與Li+周圍之F原子分佈..38 (B)EMI+質心與Li+周圍之BF4-質心分佈....53 (C)BF4-質心周圍EMI+質心與Li+之分佈....74 3-3 解 離 度..............................80 第四章 結 論................................85 參 考 文 獻...................................87

    1. J. Tarascon and D. Guyomard, Electrochimica Acta 1993, 38, 1221.
    2. 黃怡玲, 國立成功大學化學研究所碩士論文, 2005.
    3. Armand A. Fannin, Jr., Danilo A. Floreani, Lowell A. King, John S. Landers, Bernard J. Piersma,Daniel J. Stech, Robert L. Vaughn, John S. Wilkes, and John L. Williams, J. Phys. Chem. 1984, 88, 2614.
    4. P. Walden, Bull. Acad. Imper. Sci. (St. Petersberg), 1914, 1800.
    5. J. S. Wilkes, J. A. Levisky, R. A. Wilson and C. L. Hussey, Inorg. Chem. 1982, 21, 1263.
    6. J. S. Wilkes, M. J. Zaworotko, J. Chem. Soc., Chem. Commun. 1992, 965.
    7. P. Bonhôte, A. P. Dias, N. Papageorgiou, K. S. Kalyanasundaram, M. Grätzel, Inorg. Chem. 1996, 35, 1168.
    8. Akihiro Noda, Kikuko Hayamizu, and Masayoshi Watanabe, J. Phys. Chem. B 2001, 105, 4603.
    9. Kikuko Hayamizu, Yuichi Aihara, Hiroe Nakagawa, Toshiyuki Nukuda and William S. Price, J. Phys. Chem. B 2004, 108, 19527.
    10. A. Noda, K. Hayamizu, M. Watanabe, J. Phys. Chem. B 2001, 105, 9663.
    11. J. Andrade, E. S. Bo1es, H. Stassen, J. Phys. Chem. B 2002, 106, 13344.
    12. 范駿威, 國立成功大學化學研究所碩士論文, 2002.
    13. 王鴻益, 國立成功大學化學研究所碩士論文, 2003.
    14. 洪紹琪, 國立成功大學化學研究所碩士論文, 2004.
    15. 王韋翔, 國立成功大學化學研究所碩士論文, 2004.
    16. J. K. Shah, J. F. Brennecke, E. J. Maginn, Green Chemistry 2002, 4, 112.
    17. V. Znamenskiy, M. N. Kobrak, J. Phys. Chem. B 2004, 108, 1072.
    18. C. G. Hanke, N. A. Atamas R. M. Lynden-Bell, Green Chemistry 2002, 4, 107.
    19. C. G. Hanke and R. M. Lynden-Bell, J. Phys. Chem. B 2003, 107, 10873.
    20. A. Chaumont, G. Wipff, J. Phys. Chem. B 2004, 108, 3311.
    21. D. N. Theodorou, and U. W. Suter, Macromolecules 1985, 18, 1206.
    22. J. N. Baskir, and U. W. Suter,Macromolecules 1988, 21, 1877.
    23. Discover user guide Part 1, Biosym/MSI Technologies 1996, V4.0.
    24. S. N. Baker, G. A. Baker, M. A. Kane, F. V. Bright, J. Phys. Chem. B 2001, 105, 9663.
    25. M. L. T. Asaki, A. Redondo, T. A. Zawodzinski, A. J. Taylor, J. Chem. Phys. 2002, 116, 23, 10377.
    26. H. Every, A.G. Bishop, M. Forsyth, D.R. MacFarlane, Electrochim. Acta 2000, 45,1279.
    27. B. H. Zimn, J. Phys. Chem. 1953, 21, 934.
    28. Sergio, M. U. and M. C. C. Ribeiro, J. Chem. Phys., 2005, 122, 24511.
    29. H. Every, A. G. Bishop, M. Forsyth, D. R. MacFarlane, Electrochim. Acta. 2000, 45, 1279.
    30. A. Wallqvist and D. G. Covell, J. Am. Chem. Soc. 1998, 120, 427.
    31. Jing-Fang Huang, Po-Yu Chen, I-Wen Sun, S.P. Wang, Inorganica Chimica Acta, 2001, 320, 7.

    下載圖示 校內:立即公開
    校外:2006-06-27公開
    QR CODE