簡易檢索 / 詳目顯示

研究生: 張家穎
Chang, Chia-Ying
論文名稱: 振盪水柱之氣室水動力特性解析和實驗研究
Analytical and Experimental Investigation of Chamber Hydrodynamic Performance of Oscillating Water Column System
指導教授: 周乃昉
Chou, N.-F Frederick
學位類別: 博士
Doctor
系所名稱: 工學院 - 水利及海洋工程學系
Department of Hydraulic & Ocean Engineering
論文出版年: 2016
畢業學年度: 105
語文別: 英文
論文頁數: 211
中文關鍵詞: 新能源波能波能轉換流體動力學水工模型試驗
外文關鍵詞: Renewable energy, Wave power, Wave energy converter, Hydrodynamics, Hydraulic model test
相關次數: 點閱:126下載:10
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 地球上化石資源長期為人類所開發利用,受限於儲存量有被耗竭之危機,及嚴重汙染、破壞環境諸因素,近世來能源利用之覺醒,啟動再生能源之開發已迫在眉捷;波能發電技術此再生能源之開發可顯示其優勢,採固定式防波堤發電機,既可用來保護海岸、減少海岸被侵蝕,又可做為船舶停靠碼頭,世界各國都積極研究OWC安裝於海岸最適地點,取得最佳效率化。
    台灣位於海洋最佳位置,並為世界專家評為再生綠能產業最有前途的地方,但台灣政府以追求GDP而大量使用石化原料,缺乏長遠視野,已造成環境嚴重破壞,而再生波能僅佔產業之微量,殊為可惜,有鑒於此,本文以使用實驗方式來介紹OWC氣室內的現象,以及研究外型設計之優化以取得最大波能,針對不同背板角度、導板、入口開口寬度進行分析波能的取得,由三種實驗模型中,發現改變OWC背板角度所擷取的能源最為明顯,實驗探討冀能為台灣再生能源產業提一最佳方案。

    Renewable green energy is becoming increasingly important due to the expected limit of fossil energy resources and to reduce pollution. Wave energy generation technology has been significantly developed in recent years among numerous types of renewable energy. Fixed breakwater, used to protect shorelines, marine structures, moored vessels, marinas and harbors from wave attacks, may be considered as a common site for installing oscillating water column (OWC) for exploited wave energy. Wave energy have been considered by many experts as one of the most promising green energy for Taiwan. However, the amount of wave energy presently generated constitutes a minor percentage of Taiwan’s total energy production. This paper presents experimental results of a laboratory water chamber of OWC, wherein the fundamental parameters of geometrical design are individually investigated and optimized, for maximum wave energy.
    The effects of a variety of back plates angle, fence plates and open wide inlets of OWC chamber are analyzed and tested for catching capability of wave energy. Three experimental models are tested to include an evaluation of the effectiveness of back plate, fence plate and open wide inlet. The operation of OWC qualitatively differs from that predicted by linear theory, identify to critical flow characteristic; front wall down-wash in the water column. The surveys were then expanded to offer general arrangement or a planning material for the geometry optimization of the chamber that could potentially achieve the largest average amplification factor of an OWC system. The wave energy in the OWC significantly varies with different back angles. The results demonstrate that this new OWC could provide more efficient wave energies.

    中文摘要…...... I Abstract……………………………………………………………………….II Acknowledgements……………………….…………………………………...III Contents……….……………………….………………………………….......IV Tables……….……………………….………………………………………..VI Figures……….……………………….……………………………………....VII Symbols……….……………………….……………………………………XIII Chapter I. Introduction 1 1.1. Background………………………………………...………1 1.2. Purpose of this study…………………………………3 1.3. Device model…………………………………………....…4 1.4. Assessment test………………………………………...…21 Chapter II. Experimental technique…………………………………………24 2.1. Background……………………………….………………24 2.1.1. Wave tank………………………………………………...24 2.1.2. Wave gauges……………………………………...………26 2.1.3. Data Acquisition (DAQ) ………………………...………27 2.2. Experimental setup………………...………...…………..27 2.2.1. Particle tracking……………………………...…………..28 2.2.2. Flow visualization system…………………...…………...29 Chapter III. Numerical analysis …………………………………………...31 3.1. Wave power……………………………………...…….....31 3.2. Wave governing equation……………………...…….....32 3.3. Boundary conditions…………………………………… 33 3.4. Numerical model simulation……………………………33 Chapter IV. Analytic solution ………………………………………………35 4.1. Formulation……………………………………...…….....35 Chapter V. Numerical result 45 Chapter VI. Experimental analysis 52 6.1 The first group of experiments…………………..………..52 6.2 The second group of experiments…………..…………….69 6.3 The third group of experiments………………………...…85 6.4 The fourth group of experiments………………………...102 6.5 The fifth group of experiments…………………..............119 6.6 The sixth group of experiments………………………….136 6.7 The seventh group of experiments………………………152 6.8 The eighth group of experiments………………………..169 6.9 The ninth group of experiments…………………………186 Chapter VII. Conclusion 203 References ……………………………………………………………….....205

    1. Alan Fleming, Irene Penesis, Gregor Macfarlane, Neil Bose and Tom Denniss (2012), “Energy balance analysis for an oscillating water column wave energy converter,” Ocean Engineering , Vol.54,pp.26–33.
    2. Alcorn R, Hunter S, Signorelli C, Obeyesekera R, Finnigan T, Denniss T. Results association for hydraulic research. Beijing, China; 2001. pp. 35–42.
    3. Bellamy, N.W(1985), “Bellamy The circular sea clam wave energy converter,” Proceedings of IUTAM Symposium on Hydrodynamics of Ocean Wave-Energy Utilization, Lisbon, pp. 69–79.
    4. Boake, C.B., Whittaker, T.J.T., Folley, M., and Ellen, H (2002), ”Overview and Initial Operational Experience of the LIMPET Wave Energy Plant,” Proceedings of 12th International Offshore and Polar Engineering Conference, Kyushu, Japan.
    5. Brendmo A, Falnes J, Lillebekken PM.(1996), ”Linear modelling of oscillating water columns including viscous loss.” Appl Ocean Res; No18:pp 65-75.
    6. Brito-Melo A, Gato LMC, Sarmento AJNA(2002),“Analysis of Wells turbine design parameters by numerical simulation of the OWC performance,” Ocean Eng;Vol29,No120, pp 1463–77.
    7. Chia-Cheng Tsai, Tai-Wen Hsu, Yueh-Ting Lin.(2011), “On Step Approximation for Roseaus Analytical Solution of Water Waves. ” Mathematical Problems in Engineering, on-line published.
    8. Chudley, J., Mrina F., Ming Y. & Johnson, F. (2002), “A tethered multiple oscillating water column wave energy device - From concept to deployment”, Oslo, Norway, American Society of Mechanical.
    9. Clément A, McCullen P, Falcǎo AFO, Fiorentino A, Gardner F, Hammarlund K,et al (2002), “Wave energy in Europe: current status and perspectives,” Renewable Sustainable Energy Rev, Vol 6,pp 405–31.
    10. Delauré, Y.M.C. and Lewis, A. (2003), “3D hydrodynamic modelling of fixed oscillating water column wave power plant by a boundary element methods.” Ocean Engineering, Vol.30, pp.309-330.
    11. Dong, G.H., Zheng, Y.N., Li, Y.C., Teng, B., Guan, C.T., Lin, D.F., 2008. “Experiments on wave transmission coefficients of floating breakwaters.” Ocean Engineering, Vol.35, pp.931–938.
    12. Evans DV, de O. Falcao AF.(1985) “Hydrodynamics of ocean wave-energy utilization.” Germany, Springer.
    13. Evans, D. V. (1980),”Some Analytic Results for Two and Three Dimensional Wave-energy Absorbers.” in Power from Sea Waves, Ed. B. Count.
    14. Evens,D.V.(1982), “Wave power absorption by systems of oscillating surface pressure distributions.”, Journal of Fluid Mechanics ,No 114,481-499.
    15. Falcão AdO.(2000), “The shoreline OWC wave power plant at the Azores. In: Proceedings of the 4th european wave energy conference.” Aalborg, Denmark, pp. 42–7.
    16. Falcão, AF de O (2001), “Wave-power absorption by a periodic linear array of oscillating water columns.”, Ocean Engineering, Vol 29, No 10, pp 1163-1186.
    17. Falcão, AF de O (2002), “Control of an oscillating-water-column wave power plant for maximum energy production.”, Applied Ocean Research, Vol 24, pp. 73-82.
    18. Falcão, AF de O, and Rodrigues, JA (2002), “Stochastic modelling of OWC wave power plant performance.”, Applied Ocean Research, Vol 24, No 2, pp. 59-71.
    19. Fang He, Zhenhua Huang, Adrian Wing-Keung Law.(2012), “Hydrodynamic performance of a rectangular floating breakwater with and without pneumatic chambers an experimental study. ”, Ocean Engineering,Vol.51,pp.16–27.
    20. Folley, M., Whittaker, T., (2010), “Spectral modeling of wave energy converters.”, Coastal Engineering, Vol. 57, pp. 892-897.
    21. Gesraha, M.R. (2006) ,”Analysis of shaped floating breakwater in oblique waves: I.Impervious rigid wave boards.”, Applied Ocean Research, Vol 28, No 5, pp.327–338.
    22. Gouaud, F., Rey. V, Piazzola, J., Hooff, R.V., (2010), “Experimental study of the hydrodynamic performance of an onshore wave power device in the presence of an underwater mound,” Costal Engineering, Vol. 57, pp 996-1005.
    23. Gray, A., (2007), “Oceanlinx to ride waves on Aim”, London Financial Times.
    24. H. Hotta, T. Miyazaki, Y. Washio, S.-I. Ishii(1998). “On the performance of the wave power device Kaimei—the results on the open sea tests”, Proceedings of 17th International Conference on Offshore Mechanics and Arctic Engineering, Houston, TX, USA, pp. 91–96.
    25. Hales, L.Z.,(1981),”Floating breakwaters: state-of-the-art literature review”, Technical Report no. 81-1. US Army Engineer Waterways Experiment Station. Vicksburg, Mississippi, USA.
    26. Heath T, Whittaker T, Boake C.(2000), “The design, construction and operation of the LIMPET wave energy converter (Islay, Scotland).” Proceedings of the 4th European wave energy conference. Aalborg, Denmark.
    27. Hegde, A.V., Kamath, K., Deepak, J.C.(2008), ”Mooring forces in horizontal interlaced moored floating pipe breakwater with three layers.” Ocean Engineering, Vol 35, No 1, pp.165–173.
    28. JAMSTEC, Japan Agency for Marine–Earth Science and Technology, Mighty Whale. Available from: 〈http://www.jamstec.go.jp/jamstec-e/30th/part6/page2.html〉.
    29. Josset, C, and Clement, AH. (2007), “A time-domain numerical simulator for oscillating water column wave power plants”, Renewable Energy, Vol 32, pp 1379-1402.
    30. Keyyong Hong, Seung-Ho Shin, Do-Chun Hong, Hark-Sun Choi and Seok-Won Hong.(2007),“Effects of Shape Parameters of OWC Chamber in Wave Energy Absorption.” Proceedings of the International Offshore and Polar Engineering Conference, pp.428-433.
    31. Kofoed JP, Frigaard P, Friis-Madsen E, Sørensen HC.(2006), ” Prototype testing of the wave energy converter wave dragon.” Renew energy, Vol 31, pp.181–9.
    32. Kondo H, Yamauchi I, Osanai S.(2001), “An upright detached breakwater installing pendulor wave power converter. In: Proceedings of the congress–international association for hydraulic research.” Proceedings of the International Association of Hydraulic Engineering and Research, pp. 35–42.
    33. Lagstroem, G. (2000), “Sea Power International - Floating wave power vessel, FWPV". "Wave power - Moving towards commercial viability.” Proceedings of the International European Wave Energy Conference, Aalborg, Denmark.
    34. Liang, N.-K., Huang, J.-S., Li, C.-F.(2004),”A study of spar buoy floating breakwater.” Ocean Engineering, Vol 31, No 1, pp. 43–60.
    35. Lund H, Mathiesen BV.(2009), ” Energy system analysis of 100% renewable energy systems, the case of Denmark in years 2030 and 2050.” Energy, Vol 34, No 5, pp. 524-31.
    36. Marjani AEL, Castro Ruiz F, Rodriguez MA, Parra Santos MT.(2008), ” Numerical modeling in wave energy conversion systems.” Energy , Vol 33, pp. 1246-53.
    37. Marjani, A. E., Castro, F., Bahaji, M., Filali, B.(2006), “3D unsteady flow simulation in an OWC wave converter plant,” Proceedings of the International conference on Renewable Energies and Power Quality, pp. 1-6.
    38. Masami Suzuki and Chuichi Arakawa.(2003), “Numerical Methods to Predict Characteristics of Oscillating Water Column for Terminator Type of Wave Energy Converter.” Proceedings of the International Offshore and Polar Engineering Conference,pp.333-340.
    39. Masami Suzuki, Toshiari Kuboki, Chuichi Arakawa, Shuichi Nagata.(2006), “Numerical Analysis on Optimal Profile of Floating Device with OWC Type Wave Energy Converter.” Proceedings of the International Offshore and Polar Engineering Conference, pp.466-473.
    40. McCabe A, Bradshaw A, Widden M, Chaplin R, French M.(2003), “Meadowcroft JPS. FROG Mk 5: an offshore point absorber wave energy converter.” Proceedings of the fifth European wave energy conference, Cork, Ireland, pp. 31–7.
    41. McCartney, B.L.(1985),” Floating Breakwater Design. J. Waterw.” Coastal Ocean Engineering , Vol 111, No 2, pp.304–318.
    42. Mehlum, E. Mehlum.(1985),” TAPCHAN Proceedings of IUTAM Symposium on Hydrodynamics of Ocean Wave-Energy Utilization”, Lisbon, pp. 50–55.
    43. Mohamed, M.H., Janiga, G., Pap, E.(2011), “Multi-objective optimization of the airfoil shape of Wells turbine used for wave energy conversion,” Energy, Vol. 36, pp 438-446.
    44. Morris-Thomas TM, Irvin RJ, Thiagarajan KP.(2007),”An investigation into the hydrodynamic efficiency of an oscillating water column.” Offshore Mechanics and Arctic Engineering, Vol 129, No 4, pp.273-8.
    45. Murali, K., Mani, J.S.(1997),” Performance of cage floating breakwater. J. Waterw.” Coastal Ocean Engineering, Vol 123, No 4, pp.172–179.
    46. Newman, J. N. (1977),” The Interaction of Stationary Vessels with Regular Waves.” Proceedings of the eleventh Symposium on Naval Hydrodynamics, London, pp. 491-501.
    47. Ogilvie, T. F.(1969), Oscillating pressure fields on a free surface, Austria : University of Michigan Press.
    48. Osprey, Renewable Energy. Available from: 〈http://www.ospreyltd.com/renewable_energy〉.
    49. Osprey, Renewable Energy. Available from: 〈http://www.ospreyltd.com/renewpage2.html〉.
    50. Paixao Conde JM, Gato LMC. (2008), “Numerical study of the air-flow in an oscillating water column wave energy converter,” Renewable Energy, Vol 33, pp.2637–2644.
    51. Panicker, NN (1976), “Power resource estimate of ocean surface waves”, Ocean Engineering, Vol 3, No 6, pp 429-439.
    52. Pelamis wave power. Available from: 〈http://www.pelamiswave.com/〉.
    53. Perdigão J, Sarmento AJNA.(2003).” Overall-efficiency optimisation in OWC devices,” Applied Ocean research, Vol 3, No 25, pp 157-66.
    54. Pereiras, B., Castro, F., marjani, A., Rodriguez, M.A. (2011), “An improved radial impulse turbine for OWC,” Renewable Energy, Vol. 36, pp 1477-1484.
    55. Pontes, MT, Falcão, AFO. (2001), “Oceans Energies: Resourses and Utilization”, Proceedings of the 18th World Energy Conference, Buenos Aires.
    56. Prado M. (2005), “Archimedes wave swing (AWS) ocean wave.” Proceedings of the 10th international offshore and polar engineering Conference.
    57. S.D.E. Energy Ltd. 〈http://peswiki.com/index.php/Directory:S.D.E._Energy_Ltd.
    58. Suzuki, M, and Arakawa, C. (2000), “Guide Vanes Effect of Wells Turbine for Wave Power Generator,” Proceedings of the International Offshore and Polar Engineering Conference, pp 153-159.
    59. Sykes RK, Lewis AW, Thomas GP. (2007),” A Physical and Numerical Study of a Fixed Cylindrical OWC of Finite Wall Thickness”, Proceedings of the 7th European Wave and Tidal Energy Conference, Porto, Portugal.
    60. Taha, Z., Sugiyono, Sawada, T.(2010), “A comparison of computational and experimental results of Wells turbine performance for wave energy conversion,” Applied Ocean Research, Vol. 32, pp. 83-90.
    61. Thakker A, Hourigan F.(2005), “Computation fluid dynamics analysis of a 0.6m,0.6hub-to-tip ratio impulse turbine with fixed guide vanes” ,Renewable Energy , Vol.30, pp. 1387-99.
    62. Thakker, A. and Abdulhadi, R., 2008, “The performance of Wells turbine under bi-directional airflow”, Renewable Energy, Vol 33, pp. 2467-2474.
    63. Thakker, A., Jarvis, J., Sahed, A., 2009, “Design charts for impulse turbine wave energy extraction using experimental data,” Renewable Energy, Vol. 34, pp. 2264-2270.
    64. Thiruvenkatasamy, K, and Neelamani, S (1997),“On the efficiency of wave energy caissons in array”, Applied Ocean Research, Vol 19, pp 61 - 72.
    65. Uzaki, K.-i., Ikehata, Y., Matsunaga, N.(2011), ”Performance of the wave energy dissipation of a floating breakwater with truss structures and the quantification of transmission coefficients.” Journal of Coastal Research, Vol 27, No 4 , pp 687-697.
    66. Voith Hydro Wavegen Limited. Available from: 〈http://www.wavegen.co.uk/what_we_offer_limpet.htm〉.
    67. Wang, H.Y., Sun, Z.C.(2010), ”Experimental study of a porous floating breakwater.” Ocean Engineering, Vol 37 , No 5, pp 520-527.
    68. Washio et al., Y. Washio, H. Osawa, Y. Nagata, H. Furuyama, T. Fujita.(2000), “The offshore floating type wave power device ‘Mighty Whale’: open sea tests.” Proceedings of the 10th International Offshore and Polar Engineering Conference, Seattle, USA, pp. 373–380.
    69. Washio Y, Osawa H, Nagata Y, Fujii F, Furuyama H, Fujita T.(2001),”The offshore floating type wave power device “Mighty Whale”: open sea tests. “Proceedings of the 10th international offshore and polar engineering conference. Seattle, USA, p.p. 373–80.
    70. Watabe et al., T. Watabe, H. Kondo, H. Shirai, K. Seino, (1994), “Remodelling of Muroran wave test plant”, Proceedings of the 4th International Offshore and Polar Engineering Conference, Osaka, Japan, pp. 353–358.
    71. Wave Dragon. Available from: 〈http://www.wavedragon.net/〉.
    72. Wave Energy Centre, OWC Pico power plant. Available from: 〈http://www.pico-owc.net/〉.
    73. Wehausen, J.V. & Laitone, E.V. (1960), “Surface waves.” In Handbuch der Physik (ed. S.Flugge), Springer, pp. 446-778.
    74. Whittaker et al., T.J.T. Whittaker, S.J. McIwaine, S. Raghunathan(1993). “A review of the Islay Shoreline Wave Power Station”, Proceedings of the European Wave Energy Symposium, Edinburgh, UK, pp. 283–288.
    75. Yali Zhang, Qing-Ping Zou, Deborah Greaves.(2011), “Air-water two-phase flow modelling of hydrodynamic performance of an oscillating water column device. ” Renewable Energy,pp.1–12.
    76. Yu et al., Z. Yu, J. Ye, Y. You et al.(1997). “Site test of a 20kW wave power station at Dawashan Island”, Proceedings of the 16th International Conference on Offshore Mechanics and Arctic Engineering, Yokohama, Japan, vol. 1-B, pp. 97–104.
    77. Zegao Yin, Hongda Shi, Xianwei Cao.(2010),“Numerical Simulation of Water and Air Flow in Oscillating Water Column Air Chamber. ” Proceedings of the International Offshore and Polar Engineering Conference,Vol.20,pp.796-801.
    78. Zhen Liu , Beom-Soo Hyun , Jiyuan Jin , Keyyong Hong.,2011 , “Practical Evaluation Method on the Performance of Pilot OWC System in Korea.” Proceedings of the International Offshore and Polar Engineering Conference,Vol.21,pp.644-649.

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE