| 研究生: |
李益誠 Li, Yi-Cheng |
|---|---|
| 論文名稱: |
藉由時域聚焦多光子激發術於高通量微結構之製作 High-throughput Fabrication of Microstructures via Temporal Focusing-based Multiphoton Excitation |
| 指導教授: |
陳顯禎
Chen, Shean-Jen |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
理學院 - 光電科學與工程學系 Department of Photonics |
| 論文出版年: | 2014 |
| 畢業學年度: | 102 |
| 語文別: | 英文 |
| 論文頁數: | 92 |
| 中文關鍵詞: | 多光子激發微米製作 、神經引導 、細胞外基質 、時域聚焦 、多光子誘發剝離 |
| 外文關鍵詞: | multiphoton excited microfabrication, neuronal guidance, extracellular matrix, temporal focusing, multiphoton-induced ablation |
| 相關次數: | 點閱:112 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文一開始,以孟加拉玫瑰素(rose Bengal,RB)當作光起始劑之多光子激發(multiphoton excitation,MPE)微製作技術被用來製作各種材料之二維微米圖案及三維微米結構,例如細胞外基質(extracellular matrix,ECM)蛋白質、明膠和高分子聚合物,並利用它們來引導小鼠大腦皮質神經細胞的軸突生長。實驗結果顯示,神經軸突的生長可以很有效率的被侷限或引導藉由這些大面積的二維正向和負向微米圖案,同時也探討了不同材料對於神經軸突生長的影響。除此之外,我們亦使用了另一種變性膠原蛋白材料-明膠,或明膠與多聚賴氨酸(poly-D-lysine,PDL)的混合液來製作具生物相容性的三維微米結構。其結果亦顯示這些微結構對於引導神經軸突在三維環境的生長是很有潛力的。
然而,由於傳統的MPE微製作技術是採用點掃描的方式來進行,因此、製作速度慢所造成的低產量是其最大缺點。為了改善這個限制,我們發展了一套具時域聚焦與圖形化照射的MPE微製作系統。藉由一層一層堆疊的方式,任意形狀的三維高分子聚合物結構可以被快速地製作出來。與傳統的掃描式MPE相比,此方法不僅可製作出任意形狀的微結構,在製作的速度上更可提升約三個數量級。此外,這套系統整合了一個數位微面鏡裝置(digital micromirror device)可用來針對特定的區域,局部地控制雷射脈衝的數量。藉由這項功能並搭配RB當作光活化劑,多個不同灰階(梯度濃度)的三維牛血清蛋白(bovine serum albumin,BSA)結構可以在幾秒鐘之內被同時製作出來。同時,所製作出來的牛血清蛋白結構亦可被即時監測藉由利用RB當作雙光子激發螢光(two-photon excited fluorescence,TPEF)的對比劑。因具有獨特的高速、灰階製作以及即時監控的能力,此方法符合了許多生醫應用的需求,特別是對於細胞外基質的相關研究。
最後,我們亦利用此系統對氧化石墨烯(graphene oxide,GO)薄膜進行高通量多光子誘發還原與剝離的研究。還原的程度以及剝離的過程可以很精準地被操控藉由調控雷射的波長、功率以及脈衝數量。相對於逐點雷射掃描的方式,此方法具備了高產能與多功能的優點,進而可以在GO的薄膜上製作出具有微米特徵尺度的大面積圖案。因此,此具有時域聚焦與脈衝控制的超快雷射系統可符合高產量的需求,將有助於GO相關材料在微電子裝置上的應用。
In this thesis, multiphoton excitation (MPE) microfabrication using Rose Bengal (RB) as the photoinitiator was first used to create two-dimensional (2D) micropatterns and three-dimensional (3D) microstructures with various materials, such as extracellular matrix (ECM) proteins, gelatin, and polymer, and then utilized the bio-microstructures to guide axonal outgrowth of primary cortical neurons. Large-scale positive and negative patterns were created, and the results demonstrated that neurite growth can be constrained or guided in a well-controlled manner via the micropatterns. In addition, gelatin, a denature collagen or mixture of gelatin and poly-D-lysine (PDL) were used for fabricating 3D microstructures. The results are also promising for guiding growth of axons in 3D microenvironment.
However, one of the limits of conventional scanning MPE microfabrication is its low throughput due to point-by-point processing. To surpass this limit, a MPE microfabrication system based on temporal focusing and patterned excitation has been developed to quickly provide 3D freeform polymer microstructures. The microstructures are created by sequentially stacking 2D fabricating patterns. Compared to conventional scanning MPE, this approach offers freeform microstructures and a greater than three-order increase in fabrication speed. Furthermore, the system integrated with a digital micromirror device for locally controlling the laser pulse numbers which can provide high-throughput fabrication of 3D gray-level bio-microstructures via two-photon crosslinking. Multiple bovine serum albumin (BSA) structures of different concentrations were simultaneously achieved by selecting different pulse numbers in the designated regions with an appropriate femtosecond laser power within a few seconds. Moreover, the fabricated BSA microstructure can be monitored online by utilizing the RB two-photon excited fluorescence (TPEF) as contrast agent. This approach with its unique capability of high-speed, gray-level, and online-inspection fabrication meets the requirements of the biomedical researches involved in ECM.
Finally, high-throughput multiphoton-induced reduction and ablation of graphene oxide (GO) films has also been studied using this system. The degree of reduction and ablation can be precisely implemented via controlling the laser wavelength, power, and pulse number. Compared to point-by-point scanning laser direct writing, this method offers a high-throughput and multiple-function approach to accomplish large-area and micro-scale patterns on GO films. The high-throughput micropatterning of GO via the temporal focusing-based femtosecond laser system matches the requirement of mass production for GO-based applications in microelectronic devices.
1. B. R. Masters and P. T. So, ed., Handbook of Biomedical Nonlinear Optical Microscopy (Oxford, 2008).
2. I. Freund, and M. Deutsch, “Second-harmonic microscopy of biological tissue,” Opt. Lett. 11, 94–96 (1986).
3. S. Kawata, H. B. Sun, T. Tanaka, and K. Takada, “Finer features for functional microdevices,” Nature 412, 697–698 (2001).
4. W. Denk, J. H. Strickler, and W. W. Webb, “Two-photon laser scanning fluorescence microscopy,” Science 248, 73–76 (1990).
5. M. Miwa, S. Juodkazis, T. Kawakami, S. Matsuo, and H. Misawa, “Femtosecond two-photon stereo-lithography,” Appl. Phys. A: Mater. Sci. Process. 73, 561–566 (2001).
6. C. R. Lambert, I. E. Kochevar, and R. W. Redmond, “Differential reactivity of upper triplet states produces wavelength-dependent two-photon photosensitization using Rose Bengal,” J. Phys. Chem. B 103, 3737–3741 (1999).
7. J. D. Pitts, P. J. Campagnola, G. A. Epling, and S. L. Goodman, “Submicron multiphoton free-form fabrication of proteins and polymers: studies of reaction efficiencies and applications in sustained release,” Macromolecules 33, 1514–1523 (2000).
8. P. J. Campagnola, D. M. Delguidice, G. A. Epling, K. D. Hoffacker, A. R. Howell, J. D. Pitts, and S. L. Goodman, “3-dimensional submicron polymerization of acrylamide by multiphoton excitation of xanthene dyes,” Macromolecules 33, 1511–1513 (2000).
9. Y. Y. Cao, N. Takeyasu, T. Tanaka, X. M. Duan, and S. Kawata, “3D metallic nanostructure fabrication by surfactant-assisted multiphoton-induced reduction,” Small 5, 1144–1148 (2009).
10. M. Stoneman, M. Fox, C. Y. Zeng, and V. Raicu, “Real-time monitoring of two-photon photopolymerization for use in fabrication of microfluidic devices,” Lab Chip 9, 819–827 (2009).
11. C. E. Olson, M. J. R. Previte, and J. T. Fourkas, “Efficient and robust multiphoton data storage in molecular glasses and highly crosslinked polymers,” Nat. Materials 1, 225–228 (2002).
12. Z. B. Sun, X. Z. Dong, S. Nzkanishi, W. Q. Chen, X. M. Duan, and S. Kawata, “Log-pile photonic crystal of CdS-polymer nanocomposites fabricated by combination of two-photon polymerization and in situ synthesis,” Appl. Phys. A 86, 427–431 (2007).
13. A. Vogel and V. Venugopalan, “Mechanisms of pulsed laser ablation of biological tissues,” Chem. Rev. 103, 2, 577–644 (2003).
14. R. R. Gattass, L. R. Cerami, and E. Mazur, “Micromachining of bulk glass with bursts of femtosecond laser pulses at variable repetition rates,” Opt. Express 14, 5279–5284 (2006).
15. A. Uchugonova, A. Isemann, E. Gorjup, G. Tempea, R. Buckle, W. Watanabe, and K. Konig, “Optical knock out of stem cells with extremely ultrashort femtosecond laser pulses,” J. Biophoton. 1, 463–469 (2008).
16. W. Watanabe, N. Arakawa, S. Matsunaga, T. Higashi, K. Fukui, K. Isobe, and K. Itoh, “Femtosecond laser disruption of subcellular organelles in a living cell,” Opt. Express 12, 4203–4213 (2004).
17. D. Giguère, G. Olivié, F. Vidal, S. Toetsch, G. Girard, T. Ozaki, J. Kieffer, O. Nada, and I. Brunette, “Laser ablation threshold dependence on pulse duration for fused silica and corneal tissues: experiments and modeling,” J. Opt. Soc. Am. A 24, 1562–1568 (2007).
18. P. S Tsai, P. Blinder, B. J Migliori, J. Neev, Y. Jin, J. A Squier, and D. Kleinfeld, “Plasma-mediated ablation: an optical tool for submicrometer surgery on neuronal and vascular systems,” Curr. Opin. Biotechn. 20, 90–99 (2009).
19. E. Stratakis, M. Barberoglou, C. Fotakis, G. Viau, C. Garcia, and G. A. Shafeev, “Generation of Al nanoparticles via ablation of bulk Al in liquids with short laser pulses,” Opt. Express 17, 12650–12659 (2009).
20. A. S. Mahmood, M. Sivakumar, K. Venkatakrishnan, and B. Tan, “Enhancement in optical absorption of silicon fibrous nanostructure produced using femtosecond laser ablation,” Appl. Phys. Lett. 95, 034107 (2009).
21. Y. A. Vlasov, X.-Z. Bo, J. C. Sturm, and D. J. Norris, “On-chip natural assembly of silicon photonic bandgap crystals,” Nature 414, 289–293 (2001).
22. S. R. Kennedy, M. J. Brett, O. Toader, and S. John, “Fabrication of tetragonal square spiral photonic crystals,” Nano Lett. 2, 59–62 (2002).
23. E. Kuramochi, M. Notomi, T. Kawashima, J. Takahashi, C. Takahashi, T. Tamamura, and S. Kawakami, “A new fabrication technique for photonic crystals: Nanolithography combined with alternating-layer deposition,” Opt. Quant. Elec. 34, 53–61 (2002).
24. D.N. Sharp, M. Campbell, E.R. Dedman, M.T. Harrison, R.G. Denning, and A.J. Turberfield, “Photonic crystals for the visible spectrum by holographic lithography,” Opt. Quant. Elec. 34, 3–12 (2002).
25. D. Oron, E. Tal, and Y. Silberberg, “Scanningless depth-resolved microscopy,” Opt. Express 13, 1468–1476 (2005).
26. G. Zhu, J. V. Howe, M. Durst, W. Zipfel, and C. Xu, “Simultaneous spatial and temporal focusing of femtosecond pulses,” Opt. Express 13, 2153–2159 (2005).
27. M.E. Durst, G. Zhu, and C. Xu, “Simultaneous spatial and temporal focusing in nonlinear microscopy,” Opt. Commun. 281, 1796–1805 (2008).
28. A. Vaziri, J. Tang, H. Shroff, and C. V. Shank, “Multilayer three-dimensional super resolution imaging of thick biological samples,” PNAS 105, 20221–20226 (2008).
29. E. Papagiakoumou, F. Anselmi, A. Bègue, V. deSars, J. Glückstad, E. Y. Isacoff, and V. Emiliani, “Scanless two-photon excitation of channelrhodopsin-2,” Nat. Methods 7, 848–854 (2010).
30. L.-C. Cheng, C.-Y. Chang, C.-Y. Lin, K.-C. Cho, W.-C. Yen, N.-S. Chang, C. Xu, C. Y. Dong, and S.-J. Chen, “Spatiotemporal focusing-based widefield multiphoton microscopy for fast optical sectioning,” Opt. Express 20, 8939–8948 (2012).
31. F. He, H. Xu, Y. Cheng, J. Ni, H. Xiong, Z. Xu, K. Sugioka, and K. Midorikawa, “Fabrication of microfluidic channels with a circular cross section using spatiotemporally focused femtosecond laser pulses,” Opt. Lett. 35, 1106–1108 (2010).
32. D. N. Vitek, D. E. Adams, A. Johnson, P. S. Tsai, S. Backus, C. G. Durfee, D. Kleinfeld, and J. A. Squier, “Temporally focused femtosecond laser pulses for low numerical aperture micromachining through optically transparent materials,” Opt. Express 18, 18086–18094 (2010).
33. S. Hasegawa and Y. Hayasaki, “Adaptive optimization of hologram in holographic femtosecond laser processing system,” Opt. Lett. 34, 22–24 (2009).
34. M. A. Swartz, “Signaling in morphogenesis: transport cues in morphogenesis,” Curr. Opin. Biotechnol. 14, 547–550 (2003).
35. L. Liaw, M. P. Skinner, E. W. Raines, R. Ross, D. A. Cheresh, S. M. Schwartz, and C. M. Giachelli, “Adhesive and migratory effects of osteopontin are mediated via distinct cell-surface integrins - Role of alpha v beta 3 in smooth-muscle cell-migration to osteopontin in-vitro,” J. Clin. Invest. 95, 713–724 (1995).
36. X. Chen, Y.-D. Su, V. Ajeti, S.-J. Chen, and P. J. Campagnola, “Cell adhesion on micro-structured fibronectin gradients fabricated by multiphoton excited photochemistry,” Cell. Mol. Bioeng. 5, 307–319 (2012).
37. K.-C. Cho, C.-H. Lien, C.-Y. Lin, C.-Y. Chang, L. L. H. Huang, P. J. Campagnola, C. Y. Dong, and S.-J. Chen, “Enhanced two-photon excited fluorescence in three-dimensionally crosslinked bovine serum albumin microstructures,” Opt. Express 19, 11732–11739 (2011).
38. C.-Y. Lin, C.-H. Lien, K.-C. Cho, C.-Y. Chang, N.-S. Chang, P. J. Campagnola, C.-Y. Dong, and S.-J. Chen, “Investigation of two-photon excited fluorescence increment via crosslinked bovine serum albumin,” Opt. Express 20, 13669–13676 (2012).
39. K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, M. I. Kat-snelson, I. V. Grigorieva, S. V. Dubonos, and A. A. Firsov, “Two-dimensional gas of massless Dirac fermions in graphene,” Nature 438, 197–200 (2005).
40. Y. Zhang, J.W. Tan, H. L. Stormer, and P. Kim, “Experimental observation of the quantum Hall effect and Berry's phase in graphene,” Nature 438, 201–204 (2005).
41. A. K. Geim and K.S. Novoselov, “The rise of graphene,” Nat. Mater. 6, 183–191 (2007).
42. C. Lee, X. Wei, J. W. Kysar, and J. Hone, “Measurement of the elastic properties and intrinsic strength of monolayer graphene,” Science 321, 385–388 (2008).
43. Y. Zhou, Q. Bao, B. Varghese, L. A. L. Tang, C. K. Tan, C.-H. Sow, and K. P. Loh, “Microstructuring of graphene oxide nanosheets using direct laser writing,” Adv. Mater. 22, 67–71(2010).
44. L. Guo, H.-B. Jiang, R.-Q. Shao, Y.-L. Zhang, S.-Y. Xie, J.-N. Wang, X.-B. Li, F. Jiang, Q.-D. Chen, T. Zhang, and H.-B. Sun, “Two-beam-laser interference mediated reduction, patterning and nanostructuring of graphene oxide for the production of a flexible humidity sensing device,” Carbon 50, 1667–1673 (2012).
45. Y. Zhang, L. Guo, S. Wei, Y. He, H. Xia, Q. Chen, H.-B. Sun, and F.-S. Xiao, “Direct imprinting of microcircuits on graphene oxides film by femtosecond laser reduction,” Nano Today 5, 15–20 (2010).
46. W. Gao, N. Singh, L. Song, Z. Liu, A. L. M. Reddy, L. Ci, R. Vajtai, Q. Zhang, B. Wei, and P. M. Ajayan, “Direct laser writing of micro-supercapacitors on hydrated graphite oxide films,” Nat. Nanotechnol. 6, 496–500 (2011).
47. J.-Y. Hong and J. Jang, “Micropatterning of graphene sheets: recent advances in techniques and applications,” J. Mater. Chem. 22, 8179–8191 (2012).
48. C. Li and G. Shi, “Three-dimensional graphene architectures,” Nanoscale 4, 5549–5563 (2012).
49. D. Kim and P. T. C. So, “High-throughput three-dimensional lithographic microfabrication,” Opt. Lett. 35, 1602–1604 (2010).
50. B. J. Dickson, “Molecular Mechanisms of Axon Guidance,” Science 298, 1959–1964 (2002).
51. Jeffrey L. Goldberg, “How does an axon grow?,” Genes Dev. 17, 941–958 (2003).
52. M. J. Jang, S. Namgung, S. Hong, and Y. Nam, “Directional neurite growth using carbon nanotube patterned substrates as a biomimetic cue,” Nanotechnology 21, 235102 (2010).
53. A. C. von Philipsborn, S. Lang, J. Loeschinger, A. Bernard, C. David, D. Lehnert, F. Bonhoeffer, and M. Bastmeyer, “Growth cone navigation in substrate-bound ephrin gradients,” Development 133, 2487–2495 (2006).
54. W. Liu, W. Zheng, B. Yuan, and X. Jiang, “A micropatterned coculture system for axon guidance reveals that Slit promotes axon fasciculation and regulates the expression of L1CAM,” Integr. Biol. 5, 617–623 (2013).
55. P. Clark, S. Britland, and P. Connolly, “Growth cone guidance and neuron morphology on micropatterned laminin surfaces,” J. Cell Sci. 105, 203–212 (1993).
56. S. K. W. Dertinger, X. Jiang, Z. Li, V. N. Murthy, and G. M. Whitesides, “Gradients of substrate-bound laminin orient axonal specification of neurons,” PNAS 99, 12542–12547 (2002).
57. J. Mai, L. Fok, H.-F. Gao, X. Zhang, and M.-M. Poo, “Axon Initiation and Growth Cone Turning on Bound Protein Gradients,” J. Neurosci. 29, 7450 –7458 (2009).
58. N. M. D. Mesfin, M-A Abdul-Karim, A M P Turner, S Schanz, H G Craighead, B Roysam, J N Turner, and W Shain, “Topographically modified surfaces affect orientation and growth of hippocampal neurons,” J. Neural Eng. 1, 78–90 (2004).
59. C. K. Yeung, L. Lauer, A. OffenhaÈ usser, and W. Knoll, “Modulation of the growth and guidance of rat brain stem neurons using patterned extracellular matrix proteins,” Neurosci. Lett. 301, 147–150 (2001).
60. R. Fricke, P. D. Zentis, L. T. Rajappa, B. Hofmann, M. Banzet, A. Offenhäusser, and S. H. Meffert, “Axon guidance of rat cortical neurons by microcontact printed gradients,” Biomaterials 32, 2070–2076 (2011).
61. S. R. Hart, Y. Huang, T. Fothergill, D. C. Lumbard, E. W. Dent, and J. C. Williams, “Adhesive micro-line periodicity determines guidance of axonal outgrowth,” Lab Chip 13, 562–569 (2013).
62. A. M Taylor, M. Blurton-Jones, S. W. Rhee, D. H Cribbs, C. W Cotman, and N. L. Jeon, “A microfluidic culture platform for CNS axonal injury, regeneration and transport,” Nat. Methods 2, 599–605 (2005).
63. C. R. Kothapalli, E. van Veen, S. de Valence, S. Chung, I. K. Zervantonakis, F. B. Gertler, and R. D. Kamm, “A high throughput microfluidic assay to study neurite response to growth factor gradients,” Lab Chip 11, 497–507 (2011).
64. M. Merz and P. Fromherz, “Polyester microstructures for topographical control of outgrowth and synapse formation of snail neurons,” Adv. Mater. 14, 141-144 (2002).
65. Viesselmann, C., Ballweg, J., Lumbard, D., and Dent, E. W., “Nucleofection and primary culture of embryonic mouse hippocampal and cortical neurons,” J. Vis. Exp. 47, e2373, doi:10.3791/2373 (2011).
66. V. Ajeti, C. -H. Lien, S. -J. Chen, P. -J. Su, J. M. Squirrell, K. H. Molinarolo, G. E. Lyons, K. W. Eliceiri, B. M. Ogle, and P. J. Campagnola, “Image-inspired 3D multiphoton excited fabrication of ECM structures by modulated raster scanning,” Opt. Express 21, 25346–25355 (2013).
67. D. Kim, Ultrafast Optical Pulse Manipulation in Three Dimensional-resolved Microscopic Imaging and Microfabrication, PhD. Thesis, MIT (2009).
68. C. B Schaffer, A. Brodeur, and E. Mazur, “Laser-induced breakdown and damage in bulk transparent materials induced by tightly focused femtosecond laser pulses,” Meas. Sci. Technol. 12, 1784–1794 (2001).
69. W. S. Hummers and R. E. Offeman, “Preparation of graphitic oxide,” J. Am. Chem. Soc. 80, 1339–1339 (1958).