簡易檢索 / 詳目顯示

研究生: 黃永齡
Huang, Yung-Ling
論文名稱: 以小鼠模式探討內皮素A型受體於內皮細胞中受血液紊流之刺激表達並導致動脈粥狀硬化
Endothelin receptor type A is induced in endothelial cells to mediate disturbed flow-induced atherogenesis in mice
指導教授: 莫凡毅
Mo, Fan-E
學位類別: 碩士
Master
系所名稱: 醫學院 - 細胞生物與解剖學研究所
Institute of Cell Biology and Anatomy
論文出版年: 2020
畢業學年度: 108
語文別: 英文
論文頁數: 41
中文關鍵詞: 內皮素-1內皮素受體A動脈粥狀硬化血液紊流
外文關鍵詞: Endothelin-1, ETA, atherosclerosis, disturbed flow
相關次數: 點閱:89下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 動脈粥狀硬化 (atherosclerosis) 是一種包含血管內皮細胞功能損傷、發炎,以及脂肪堆積等過程的血管慢性疾病,其所產生的併發症是全球主要死亡原因。血液紊流 (disturbed flow) 好發於血管分岔和彎曲的地方,血液呈現多方向性較慢的流動,造成血管壁承受剪切力變小而亂,而內皮細胞 (endothelial cell) 位於血管的最內層,直接受到血液紊流的刺激而轉變成促進動脈粥狀硬化模式,在血液紊流之下的內皮細胞會過度表達內皮素-1 (endothelin-1),以及分泌促炎性細胞因子。當內皮素-1與其內皮素A型受體結合之後會使血管平滑肌細胞收縮、增生、遷移。研究顯示,內皮素A型受體在病理以及發炎的條件之下會受到誘導而表達於內皮細胞,而正常的條件下,內皮素A型受體大多表達在平滑肌細胞。因此我們假設,血液紊流誘導內皮細胞表達內皮素A型受體,與內皮素-1結合後使內皮細胞失能造成動脈粥狀硬化。首先為了觀察內皮素A型受體在血液紊流之下是否會受到誘導表現於內皮細胞,在動物模式中,我們利用結紮左側總頸動脈手術造成區域血液紊流,並以口服給予小鼠內皮素A型受體拮抗劑Zibotentan,四個星期後發現,阻斷內皮素-1與內皮素A型受體的結合,可防止血液紊流刺激血管內膜新生 (neointima formation)及內皮素A型受體在內皮細胞的表達。而為了近一步觀察動脈粥狀硬化的發展過程,我們使用高血脂背景的ApoE- knockout (KO) 小鼠,施予部分頸動脈結紮手術,三個星期後血管內有明顯粥狀斑塊(plaque)形成,並每天口服給予內皮素A型受體拮抗劑Zibotentan,發現粥狀斑塊大小顯著減小。而血液紊流會誘導內皮素A型受體在內皮細胞表達,藉由阻斷內皮素-1與內皮素A型受體的結合,顯著抑制內皮素A型受體在內皮細胞的表達,也使發炎反應得到緩解,同時也減少了脂肪堆積。因此我們的實驗結果證實,內皮素A型受體會受紊流誘導在內皮細胞表達刺激動脈病變,阻斷內皮素-1與內皮素A型受體的結合可以有效地防止動脈粥狀硬化。
    關鍵詞: 內皮素-1,內皮素受體A,動脈粥狀硬化,血液紊流。

    Atherosclerosis is a chronic vascular disease involving endothelial dysfunction, inflammation, and lipid accumulation. The complication of atherosclerosis is the leading cause of death in the world. Disturbed flow imposes low and irregular distribution of vessel wall shear stress at arterial bifurcations and curvatures. Endothelial cells (ECs) chronically activated by disturbed flow acquire atheroprone phenotypes. Atheroprone ECs overexpress endothin-1 (ET-1) and secrete proinflammatory cytokines. ET-1 binding with its receptor ETA leads to smooth muscle cell contraction, proliferation and migration. ETA is critical in the development of diseases such as pulmonary hypertension, atherosclerosis and myocardial ischemia. ETA expression is largely found in vascular smooth muscle cells and barely detectable in ECs. We hypothesized that ETA is induced by disturbed flow in ECs to mediate ET-1-associated atherosclerosis. We used the complete-carotid-artery-ligation mouse model to generate local blood flow turbulence to induce neointima in wild-type (WT) C57BL/6 mice. The left common carotid artery (LCA) was ligated close to the bifurcation. The unligated right common carotid artery (RCA) was used as a sham control. Neointima was induced in WT mice 4 weeks after ligation. Remarkably, daily treatment of the ETA-specific antagonist Zibotentan given orally at 10 mg/kg/day using a gavage needle starting immediately after ligation effectively inhibited ligation-induced neointimal hyperplasia. Additionally, we performed partial carotid artery ligation to induce plaque formation in ApoE- knockout (KO) mice by ligating the downstream branches of LCA, including external carotid artery; internal carotid artery; occipital artery, leaving the superior thyroid artery (STA) open. We found that oral Zibotentan at 10 mg/kg/day inhibited plaque formation in ApoE-KO mice 3 weeks after ligation. The levels of ETA in the endothelium were elevated by ligation measured by immunofluorescence, which supports the use of Zibotentan to block ET-1 action in ECs. The proinflammatory cytokine monocyte chemoattractant protein-1 (MCP-1) and vascular cell adhesion molecular-1 (VECAM-1) expressions were induced by ligation. The induction of ETA, MCP-1and VCAM-1 expression in ECs was abrogated by oral Zibotentan. In conclusion, endothelial ETA expression is induced by disturbed flow. Blocking ET-1/ETA binding inhibits atherogenesis.

    Key words: Endothelin-1, ETA, atherosclerosis, disturbed flow

    論文考試合格證明 I 中文摘要 II Abstract IV Acknowledgement VI List of Figures X Chapter 1 Introduction 1 1.1 Atherosclerosis 1 1.2 Endothelial cells dysfunction by disturbed flow 1 1.3 The progression of atherosclerosis 2 1.4 Endothelin-1 (ET-1) 2 1.5 Endothelin receptor A (ETA) 3 1.6 ETA - Specific antagonists 4 1.7 MCP-1 (CCL2) 4 1.8 VCAM-1 5 1.9 Mouse models to study atherosclerosis 6 1.10 Hypothesis 6 Chapter 2 Materials and Methods 7 2.1 Chemicals 7 2.2 Antibodies 8 2.3 Equipments 8 2.4 Solution formula 9 2.5 Animals 10 2.6 Carotid-artery-ligation animal models 11 2.7 Preparation of tissues 11 2.8 Hematoxylin & Eosin staining 12 2.9 Analysis of histology 13 2.10 Immunofluorescence staining 13 2.11 Whole-mount oil red o en face staining 13 2.12 Statistical analysis 14 Chapter 3 Results 15 3.1 Blocking ET-1/ ETA interaction inhibited neointima formation under disturbed flow 15 3.2 Blocking ET-1/ ETA interaction inhibited plaque formation by disturbed flow 15 3.3 Blocking ET-1/ETA interaction inhibits lipid deposition in atherosclerotic lesions 16 3.4 ETA is induced in ECs after complete artery ligation 16 3.5 ETA is induced in ECs after partial artery ligation in ApoE-/- mice. 17 3.6 Blocking ET-1/ETA interaction inhibited ligation-induced MCP-1 expression 17 3.7 Blocking ET-1/ETA interaction suppressed VCAM-1 induction after ligation 18 Chapter 4 Discussion 19 Chapter 5 Conclusion 21 Chapter 6 References 22 Chapter 7 Appendix 30 Chapter 8 Figures 31

    Barna, B. P., Pettay, J., Barnett, G. H., Zhou, P., Iwasaki, K., & Estes, M. L. (1994). Regulation of monocyte chemoattractant protein-1 expression in adult human non-neoplastic astrocytes is sensitive to tumor necrosis factor (TNF) or antibody to the 55-kDa TNF receptor. Journal of neuroimmunology, 50(1), 101-107.
    Barton, M., Haudenschild, C. C., d’Uscio, L. V., Shaw, S., Münter, K., & Lüscher, T. F. (1998). Endothelin ETA receptor blockade restores NO-mediated endothelial function and inhibits atherosclerosis in apolipoprotein E-deficient mice. Proceedings of the National Academy of Sciences, 95(24), 14367-14372.
    <BQ123, an ETA Receptor Antagonist, Inhibits Endothelin-l-mediated.pdf>.
    Brown, Z., Strieter, R. M., Neild, G. H., Thompson, R. C., Kunkel, S. L., & Westwick, J. (1992). IL-1 receptor antagonist inhibits monocyte chemotactic peptide 1 generation by human mesangial cells. Kidney international, 42(1), 95-101.
    Carr, M. W., Roth, S. J., Luther, E., Rose, S. S., & Springer, T. A. (1994). Monocyte chemoattractant protein 1 acts as a T-lymphocyte chemoattractant. Proceedings of the National Academy of Sciences, 91(9), 3652-3656.
    Cassie, S., Masterson, M. F., Polukoshko, A., Viskovic, M. M., & Tibbles, L. A. (2004). Ischemia/reperfusion induces the recruitment of leukocytes from whole blood under flow conditions. Free Radical Biology and Medicine, 36(9), 1102-1111.
    Chiu, J.-J., & Chien, S. (2011). Effects of disturbed flow on vascular endothelium: pathophysiological basis and clinical perspectives. Physiological reviews, 91(1), 327-387.
    Cushing, S. D., Berliner, J. A., Valente, A. J., Territo, M. C., Navab, M., Parhami, F., . . . Fogelman, A. M. (1990). Minimally modified low density lipoprotein induces monocyte chemotactic protein 1 in human endothelial cells and smooth muscle cells. Proceedings of the National Academy of Sciences, 87(13), 5134-5138.
    Cybulsky, M. I., & Gimbrone, M. A. (1991). Endothelial expression of a mononuclear leukocyte adhesion molecule during atherogenesis. Science, 251(4995), 788-791.
    Davignon, J., & Ganz, P. (2004). Role of endothelial dysfunction in atherosclerosis. Circulation, 109(23_suppl_1), III-27-III-32.
    Deshmane, S. L., Kremlev, S., Amini, S., & Sawaya, B. E. (2009). Monocyte chemoattractant protein-1 (MCP-1): an overview. Journal of interferon & cytokine research, 29(6), 313-326.
    DUC, A. T. T., Schwab, A. J., Simard, A., Villeneuve, L., & Dupuis, J. (2003). Reduction in hepatic endothelin-1 clearance in cirrhosis. Clinical science, 105(2), 227-234.
    Erdogan, H., Fadillioglu, E., & Emre, M. H. (2006). Protection from renal ischemia reperfusion injury by an endothelin-A receptor antagonist BQ-123 in relation to nitric oxide production. Toxicology, 228(2-3), 219-228.
    Firth, J., & Ratcliffe, P. (1992). Organ distribution of the three rat endothelin messenger RNAs and the effects of ischemia on renal gene expression. The Journal of clinical investigation, 90(3), 1023-1031.
    França, C. N., Izar, M. C., Hortêncio, M. N., do Amaral, J. B., Ferreira, C. E., Tuleta, I. D., & Fonseca, F. A. (2017). Monocyte subtypes and the CCR2 chemokine receptor in cardiovascular disease. Clinical science, 131(12), 1215-1224.
    Fukuroda, T., Fujikawa, T., Ozaki, S., Ishikawa, K., Yano, M., & Nishikibe, M. (1994). Clearance of circulating endothelin-1 by ETB receptors in rats. Biochemical and biophysical research communications, 199(3), 1461-1465.
    Galié, N., Badesch, D., Oudiz, R., Simonneau, G., McGoon, M. D., Keogh, A. M., . . . Shapiro, S. (2005). Ambrisentan therapy for pulmonary arterial hypertension. Journal of the American College of Cardiology, 46(3), 529-535.
    Galiuto, L., DeMaria, A. N., Del Balzo, U., May-Newman, K., Flaim, S. F., Wolf, P. L., . . . Iliceto, S. (2000). Ischemia-reperfusion injury at the microvascular level: treatment by endothelin A–selective antagonist and evaluation by myocardial contrast echocardiography. Circulation, 102(25), 3111-3116.
    Garg, U. (1996). Nitric oxide-generating vasodilators and 8-bromo cyclic guanosine monophosphate inhibit mitogenesis and proliferation of cultured rat vascular smooth muscle cells. J Clin Invest, 28, 616-626.
    Gourine, A. V., Molosh, A. I., Poputnikov, D., Bulhak, A., Sjöquist, P. O., & Pernow, J. (2005). Endothelin‐1 exerts a preconditioning‐like cardioprotective effect against ischaemia/reperfusion injury via the ETA receptor and the mitochondrial KATP channel in the rat in vivo. British journal of pharmacology, 144(3), 331-337.
    Haller, H., Bertram, A., Nadrowitz, F., & Menne, J. (2016). Monocyte chemoattractant protein-1 and the kidney. Current opinion in nephrology and hypertension, 25(1), 42-49.
    Hansson, G. K. (2005). Inflammation, atherosclerosis, and coronary artery disease. New England journal of medicine, 352(16), 1685-1695.
    Haque, S.-u., Dashwood, M. R., Heetun, M., Shiwen, X., Farooqui, N., Ramesh, B., . . . Abraham, D. J. (2013). Efficacy of the specific endothelin a receptor antagonist zibotentan (ZD4054) in colorectal cancer: a preclinical study. Molecular cancer therapeutics, 12(8), 1556-1567.
    Hide, E. J., Piper, J., & Thiemermann, C. (1995). Endothelin‐1‐induced reduction of myocardial infarct size by activation of ATP‐sensitive potassium channels in a rabbit model of myocardial ischaemia and reperfusion. British journal of pharmacology, 116(6), 2597-2602.
    Horinouchi, T., Terada, K., Higashi, T., & Miwa, S. (2013). Endothelin receptor signaling: new insight into its regulatory mechanisms. Journal of pharmacological sciences, 123(2), 85-101.
    Hortelano, S., López-Fontal, R., Través, P. G., Villa, N., Grashoff, C., Boscá, L., & Luque, A. (2010). ILK mediates LPS-induced vascular adhesion receptor expression and subsequent leucocyte trans-endothelial migration. Cardiovascular research, 86(2), 283-292.
    Iademarco, M., McQuillan, J. J., Rosen, G., & Dean, D. (1992). Characterization of the promoter for vascular cell adhesion molecule-1 (VCAM-1). Journal of Biological Chemistry, 267(23), 16323-16329.
    Johnström, P., Fryer, T. D., Richards, H. K., Harris, N. G., Barret, O., Clark, J. C., . . . Davenport, A. P. (2005). Positron emission tomography using 18F‐labelled endothelin‐1 reveals prevention of binding to cardiac receptors owing to tissue‐specific clearance by ETB receptors in vivo. British journal of pharmacology, 144(1), 115-122.
    Kumar, A., & Lindner, V. (1997). Remodeling with neointima formation in the mouse carotid artery after cessation of blood flow. Arteriosclerosis, thrombosis, and vascular biology, 17(10), 2238-2244.
    Lee, S., Chung, J., Ha, I. S., Yi, K., Lee, J. E., Kang, H. G., . . . Surh, C. D. (2007). Hydrogen peroxide increases human leukocyte adhesion to porcine aortic endothelial cells via NFκB-dependent up-regulation of VCAM-1. International immunology, 19(12), 1349-1359.
    Levin, E. (1996). Endothelins as cardiovascular peptides. American journal of nephrology, 16(3), 246-251.
    Li, Y.-S. J., Haga, J. H., & Chien, S. (2005). Molecular basis of the effects of shear stress on vascular endothelial cells. Journal of biomechanics, 38(10), 1949-1971.
    Libby, P., & Hansson, G. K. (2015). Inflammation and immunity in diseases of the arterial tree: players and layers. Circulation research, 116(2), 307-311.
    Libby, P., Ridker, P. M., & Hansson, G. K. (2011). Progress and challenges in translating the biology of atherosclerosis. Nature, 473(7347), 317.
    Luo, S. F., Fang, R. Y., Hsieh, H. L., Chi, P. L., Lin, C. C., Hsiao, L. D., . . . Yang, C. M. (2010). Involvement of MAPKs and NF‐κB in tumor necrosis factor α–induced vascular cell adhesion molecule 1 expression in human rheumatoid arthritis synovial fibroblasts. Arthritis & Rheumatism: Official Journal of the American College of Rheumatology, 62(1), 105-116.
    Martin, R. K., Raichlin, E., Prasad, A., Mathew, V., Lennon, R., Rihal, C., . . . Lerman, A. (2010). LONG TERM ENDOTHELIN RECEPTOR ANTAGONIST IMPROVES CORONARY ENDOTHELIAL FUNCTION IN PATIENTS WITH EARLY ATHEROSCLEROSIS. Journal of the American College of Cardiology, 55(10 Supplement), A158. E1480.
    Morbiducci, U., Kok, A. M., Kwak, B. R., Stone, P. H., Steinman, D. A., & Wentzel, J. J. (2016). Atherosclerosis at arterial bifurcations: evidence for the role of haemodynamics and geometry. Thrombosis and haemostasis, 115(03), 484-492.
    Morris, C., Rose, A., Curwen, J., Hughes, A., Wilson, D., & Webb, D. (2005). Specific inhibition of the endothelin A receptor with ZD4054: clinical and pre-clinical evidence. British journal of cancer, 92(12), 2148-2152.
    Nam, D., Ni, C.-W., Rezvan, A., Suo, J., Budzyn, K., Llanos, A., . . . Jo, H. (2009). Partial carotid ligation is a model of acutely induced disturbed flow, leading to rapid endothelial dysfunction and atherosclerosis. American Journal of Physiology-Heart and Circulatory Physiology, 297(4), H1535-H1543.
    Nelson, J. B., Fizazi, K., Miller, K., Higano, C., Moul, J. W., Akaza, H., . . . Gleave, M. (2012). Phase 3, randomized, placebo‐controlled study of zibotentan (ZD4054) in patients with castration‐resistant prostate cancer metastatic to bone. Cancer, 118(22), 5709-5718.
    Niu, J., Wu, J., Li, X., & Zhang, F. (2015). Association between endothelin-1/endothelin receptor A and inflammation in mouse kidneys following acute ischemia/reperfusion. Molecular medicine reports, 11(5), 3981-3987.
    Nunez, D., Brown, M. J., Davenport, A. P., Neylon, C., Schofield, J., & Wyse, R. K. (1990). Endothelin-1 mRNA is widely expressed in porcine and human tissues. The Journal of clinical investigation, 85(5), 1537-1541.
    Ohkita, M., Tawa, M., Kitada, K., & Matsumura, Y. (2012). Pathophysiological roles of endothelin receptors in cardiovascular diseases. Journal of pharmacological sciences, 12R01CR.
    Ohlstein, E. H., Arleth, A., Bryan, H., Elliott, J. D., & Sung, C. P. (1992). The selective endothelin ETA receptor antagonist BQ123 antagonizes endothelin-1-mediated mitogenesis. European Journal of Pharmacology: Molecular Pharmacology, 225(4), 347-350.
    Owen, K., Cross, D. M., Derzi, M., Horsley, E., & Stavros, F. L. (2012). An overview of the preclinical toxicity and potential carcinogenicity of sitaxentan (Thelin®), a potent endothelin receptor antagonist developed for pulmonary arterial hypertension. Regulatory Toxicology and Pharmacology, 64(1), 95-103.
    Pober, J. S., Kluger, M. S., & Schechner, J. S. (2001). Human endothelial cell presentation of antigen and the homing of memory/effector T cells to skin. Annals of the New York Academy of Sciences, 941(1), 12-25.
    Rich, S., & McLaughlin, V. V. (2003). Endothelin receptor blockers in cardiovascular disease. Circulation, 108(18), 2184-2190.
    Rodríguez-Pascual, F., Busnadiego, O., Lagares, D., & Lamas, S. (2011). Role of endothelin in the cardiovascular system. Pharmacological research, 63(6), 463-472.
    Ross, R. (1999). Atherosclerosis—an inflammatory disease. New England journal of medicine, 340(2), 115-126.
    Sek, A. C., Xie, Z., Terai, K., Long, L. M., Nelson, C., Dudek, A. Z., & Druey, K. M. (2015a). Endothelial expression of endothelin receptor a in the systemic capillary leak syndrome. PLoS One, 10(7), e0133266.
    Sek, A. C., Xie, Z., Terai, K., Long, L. M., Nelson, C., Dudek, A. Z., & Druey, K. M. (2015b). Endothelial expression of endothelin receptor a in the systemic capillary leak syndrome. PLoS One, 10(7).
    Su, J., Zhou, H., Liu, X., Nilsson, J., Fredrikson, G. N., & Zhao, M. (2017). oxLDL antibody inhibits MCP‐1 release in monocytes/macrophages by regulating Ca2+/K+ channel flow. Journal of cellular and molecular medicine, 21(5), 929-940.
    Sung, H.-J., Yee, A., Eskin, S. G., & McIntire, L. V. (2007). Cyclic strain and motion control produce opposite oxidative responses in two human endothelial cell types. American Journal of Physiology-Cell Physiology, 293(1), C87-C94.
    Sutherland, A. J., Nataatmadja, M. I., Walker, P. J., Cuttle, L., Garlick, R. B., & West, M. J. (2006). Vascular remodeling in the internal mammary artery graft and association with in situ endothelin-1 and receptor expression. Circulation, 113(9), 1180-1188. doi:10.1161/CIRCULATIONAHA.105.582890
    Tabas, I., García-Cardeña, G., & Owens, G. K. (2015). Recent insights into the cellular biology of atherosclerosis. J cell Biol, 209(1), 13-22.
    Tabas, I., Williams, K. J., & Borén, J. (2007). Subendothelial lipoprotein retention as the initiating process in atherosclerosis: update and therapeutic implications. Circulation, 116(16), 1832-1844.
    Thorin, E., & Webb, D. J. (2010). Endothelium-derived endothelin-1. Pflügers Archiv-European Journal of Physiology, 459(6), 951-958.
    Weber, C., & Noels, H. (2011). Atherosclerosis: current pathogenesis and therapeutic options. Nature medicine, 17(11), 1410.
    Wedgwood, S., & Black, S. M. (2005). Endothelin-1 decreases endothelial NOS expression and activity through ETA receptor-mediated generation of hydrogen peroxide. American Journal of Physiology-Lung Cellular and Molecular Physiology, 288(3), L480-L487.
    Widlitz, A. C., Barst, R. J., & Horn, E. M. (2005). Sitaxsentan: a novel endothelin-A receptor antagonist for pulmonary arterial hypertension. Expert review of cardiovascular therapy, 3(6), 985-991.
    Xu, L. L., Warren, M. K., Rose, W. L., Gong, W., & Wang, J. M. (1996). Human recombinant monocyte chemotactic protein and other C‐C chemokines bind and induce directional migration of dendritic cells in vitro. Journal of leukocyte biology, 60(3), 365-371.
    Zamora, M. A., Dempsey, E. C., Walchak, S. J., & Stelzner, T. J. (1993). BQ-123, an ETA receptor antagonist, inhibits endothelin-l-mediated proliferation of human pulmonary artery smooth muscle cells.

    無法下載圖示 校內:2025-03-01公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE