簡易檢索 / 詳目顯示

研究生: 鄭秉業
Cheng, Ping-Yeh
論文名稱: 以光活化過硫酸鹽法礦化水溶液中含氮有機物之研究
Mineralization of nitrogenous organics in aqueous solution by photo-activated peroxydisulfate process
指導教授: 黃耀輝
Huang, Yao-Hui
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2014
畢業學年度: 102
語文別: 中文
論文頁數: 82
中文關鍵詞: 含氮有機物過硫酸鹽光活化礦化
外文關鍵詞: nitrogenous organics, peroxydisulfate, photo activation, mineralization
相關次數: 點閱:103下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 近年來,隨著環保法規的日趨嚴格,許多無機鹽類與有機化合物也逐步被納入管制,係因其直接放流至水體可能對環境與水生動植物產生的衝擊危害。在這當中,又以含氮有機物漸被受到重視,不僅因其於工業與民生用途上的廣泛應用,亦有相關研究指出其於淨水程序中可能生成毒性更強之消毒副產物而形成二次汙染。
    為解決上述含氮有機物可能帶來的危害效應,尋找一適當的處理技術乃為當務之急。傳統有機物處理程序常以氫氧自由基進行破壞,但反應末端所生成的有機酸往往對氫氧自由基有較強抵抗性、而難以進一步被礦化。本研究以近來一受到注目的過氧化物-過硫酸鹽為氧化劑,利用光化學法進行活化生成硫酸根自由基,針對國內光電石化產業常見含氮有機物N-甲基-2-吡咯烷酮、己內醯胺、二甲基甲醯胺與乙醇氨進行礦化處理,首先以N-甲基-2-吡咯烷酮為對象探討反應過程各項操作變因之影響。實驗結果顯示在理論氧化劑需求量下,於6小時內可達95%礦化率,藉著提升光通量、氧化劑劑量或反應溫度,可將礦化效果提升至97-98%。接著,本研究嘗試引入空氣於光活化過硫酸鹽系統中,結果顯示不僅能將礦化率進一步提升至99%,因協同效應之作用,可將處理時間縮短至2小時,或以一半理論劑量於3-4小時內達完全礦化,成功處理含氮有機物並解決過往氫氧自由基技術難以完全礦化之問題。最後,利用此新穎空氣輔助光活化過硫酸鹽技術針對其餘目標汙染物進行處理,發現己內醯胺、二甲基甲醯胺於一半理論劑量下皆可達完全礦化,而乙醇氨則可達85%礦化率。

    Recently Taiwan government has gradually legislated against various inorganic salts and organic compounds in concern of their potential impacts to the aquatic system. Among them, nitrogenous organics have addressed great attention not only because of their extensive applications in industry, agriculture, personal care and clean products. More and more studies have showed that the existence of nitrogen-containing organics in wastewater treatment process will lead the formation of hazardous and carcinogenic disinfection byproducts from the reaction with free chlorine. Therefore, to find an effective and suitable technology for nitrogenous organics treatment is an urgent need. Compared to the hydroxyl-based oxidation processes where some organic acids are found to be not readily removed, this study successfully employed a sulfate-radical based oxidation technology for the removal of nitrogenous organic candidates in petroleum and optoelectronic wastewater, including N- methyl-2-pyrrolidone (NMP, C5H9NO), dimethylformamide (DMF, C3H7NO), caprolactam (CPL, C6H11NO) and monoethanolamine (MEA, C2H7NO). The results showed that sulfate radicals generated from photo-activated peroxidisulfate process could remove 95% total organic carbon (TOC) for N- methyl-2-pyrrolidone in 6 h under theoretical oxidant dosage, and the mineralization efficiency could be further enhanced by the increase in dosage, light flux or reaction temperature. Moreover, it’s proved that the introduction of air could substantially reduce the treatment time into 3-4 h with only half of the theoretical peroxydisulfate dosage used. The mineralization of other target compounds except monoethanolamine could also attain 99% TOC removal in air sparge system.

    第一章 緒論 1 1-1 研究緣起 1 1-2 研究目的與內容 1 第二章 文獻回顧 2 2-1 含氮有機物的應用與危害 2 2-2 氮鹽(氨氮)處理技術 4 2-3 電化學法除氮 6 2-4 過硫酸鹽(S2O82-) 9 2-5 N-甲基-2-吡咯烷酮(NMP) 17 第三章 實驗設備、材料與方法 23 3-1 研究架構及流程 23 3-2 實驗分析藥品 24 3-3 實驗設備與檢測儀器 25 3-4 實驗裝置 25 3-5 實驗步驟與方法 27 第四章 結果與討論 29 4-1 起始酸鹼值之影響 29 4-2 過硫酸鈉劑量之影響 31 4-3 光通量對各劑量礦化效果之影響 36 4-4 反應溫度之影響 38 4-5 氣體環境之影響 39 4-6 空氣系統-最適化過硫酸鈉劑量 45 4-7 空氣系統應用於其餘目標汙染物之礦化 53 第五章 結論與建議 56 5-1 結論 56 5-2 建議 57 參考文獻 58 附錄A 65 A-1 不同技術對候選含氮有機物礦化效果比較 65 附錄B 69 B-1 中間產物分析 69 附錄C 75 C-1 空氣輔助光活化過硫酸鹽系統礦化機制 75 附錄D 76 D-1 電化學法除氮測試 76

    1. Choi, E., Z. Yun, and T.H. Chung, Strong nitrogenous and agro-wastewater: current technological overview and future direction. Water Sci Technol, 2004. 49: p. 1-5.
    2. Shah, A.D. and W.A. Mitch, Halonitroalkanes, halonitriles, haloamides, and N-nitrosamines: a critical review of nitrogenous disinfection byproduct formation pathways. Environ Sci Technol, 2012. 46(1): p. 119-31.
    3. The Study of Pollutant Characteristics and Control Strategy of Wastewater for Industries. 2009, No. EPA-99-G104-02-215, Taiwan EPA. p. 4-63.
    4. Mook, W.T., et al., Removal of total ammonia nitrogen (TAN), nitrate and total organic carbon (TOC) from aquaculture wastewater using electrochemical technology: A review. Desalination, 2012. 285: p. 1-13.
    5. 陳琪婷, 以二氧化錳催化降解水中氨氮之研究. 2003, 國立中山大學海洋環境及工程學系.
    6. Kumar, M. and J.G. Lin, Co-existence of anammox and denitrification for simultaneous nitrogen and carbon removal--Strategies and issues. J Hazard Mater, 2010. 178(1-3): p. 1-9.
    7. Vanlangendonck, Y., D. Corbisier, and A. Van Lierde, Influence of operating conditions on the ammonia electro-oxidation rate in wastewaters from power plants (ELONITA technique). Water Res, 2005. 39(13): p. 3028-34.
    8. Devkota, L.M., et al., Variation of oxidation–reduction potential along the breakpoint curves in low ammonia. Water Environment Research, 2000. 72: p. 610-617.
    9. Lin, S.H. and C.L. Wu, Electrochemical removal of nitrite and ammonia for aquaculture. Water Research, 1996. 30: p. 715-721.
    10. Vlyssides, A.G. and C.J. Israilides, Detoxification of tannery waste liquors with an electrolysis system. Environmental Pollution, 1997. 97: p. 147-152.
    11. Li, M., et al., Efficient electrochemical reduction of nitrate to nitrogen using Ti/IrO2–Pt anode and different cathodes. Electrochimica Acta, 2009. 54(20): p. 4600-4606.
    12. Li, M., et al., Electrochemical reduction of nitrate using various anodes and a Cu/Zn cathode. Electrochemistry Communications, 2009. 11(10): p. 1853-1856.
    13. Dash, B.P. and S. Chaudhari, Electrochemical denitrificaton of simulated ground water. Water Res, 2005. 39(17): p. 4065-72.
    14. Polatides, C., M. Dortsiou, and G. Kyriacou, Electrochemical removal of nitrate ion from aqueous solution by pulsing potential electrolysis. Electrochimica Acta, 2005. 50(25-26): p. 5237-5241.
    15. Pintar, A., et al., Kinetics of the catalytic liquid-phase hydrogenation of aqueous nitrate solutions. Applied Catalysis B: Environmental, 1996. 11(1): p. 81-98.
    16. De Vooys, A., R. Van Santen, and J. Van Veen, Electrocatalytic reduction of NO3- on palladium/copper electrodes. Journal of Molecular Catalysis A: Chemical, 2000. 154(1): p. 203-215.
    17. Kim, K.W., et al., The electrolytic decomposition mechanism of ammonia to nitrogen at an IrO2 anode. Electrochimica Acta, 2005. 50(22): p. 4356-4364.
    18. Gootzen, J., et al., The electrocatalytic reduction of NO3− on Pt, Pd and Pt+ Pd electrodes activated with Ge. Journal of Electroanalytical Chemistry, 1997. 434(1): p. 171-183.
    19. Kim, K.W., et al., Electrochemical conversion characteristics of ammonia to nitrogen. Water Res, 2006. 40(7): p. 1431-41.
    20. Folli, A., et al., TiO2 photocatalysis in cementitious systems: Insights into self-cleaning and depollution chemistry. Cement and Concrete Research, 2012. 42(3): p. 539-548.
    21. Pérez, G., et al., Kinetic study of the simultaneous electrochemical removal of aqueous nitrogen compounds using BDD electrodes. Chemical Engineering Journal, 2012. 197: p. 475-482.
    22. Kolthoff, I.M. and I.K. Miller, The chemistry of persulfate. I. The kinetics and mechanism of the decomposition of the persulfate ion in aqueous medium. Journal of the American Chemical Society, 1951. 73(7): p. 3055-3059.
    23. Latimer, W.M., Oxidation Potentials. 1952, Englewood Cliffs, New Jersey: Prentice Hall, Inc.
    24. Neta, P., R.E. Huie, and A.B. Ross, Rate constants for reactions of inorganic radicals in aqueous solution. Journal of Physical and Chemical Reference Data, 1988. 17(3): p. 1027-1047.
    25. Watts, R.J. and A.L. Teel, Treatment of contaminated soils and groundwater using ISCO. Practice Periodical of Hazardous, Toxic, and Radioactive Waste Management, 2006. 10: p. 2-9.
    26. 張耿榕, 過硫酸鈉現地化學氧化法整治加油站污染場址之實證探討. 環保簡訊, 2013. 19: p. 5-1.
    27. Tsitonaki, A., et al., In Situ Chemical Oxidation of Contaminated Soil and Groundwater Using Persulfate: A Review. Critical Reviews in Environmental Science and Technology, 2010. 40(1): p. 55-91.
    28. Furman, O.S., A.L. Teel, and R.J. Watts, Mechanism of base activation of persulfate. Environmental Science & Technology, 2010. 44(16): p. 6423-6428.
    29. Anipsitakis, G.P. and D.D. Dionysiou, Radical generation by the interaction of transition metals with common oxidants. Environmental Science & Technology, 2004. 38: p. 3705-3712.
    30. Anipsitakis, G.P. and D.D. Dionysiou, Degradation of organic contaminants in water with sulfate radicals generated by the conjunction of peroxymonosulfate with cobalt. Environmental Science & Technology, 2003. 37: p. 4790-4797.
    31. Yang, Q., et al., Iron-cobalt mixed oxide nanocatalysts: Heterogeneous peroxymonosulfate activation, cobalt leaching, and ferromagnetic properties for environmental applications. Applied Catalysis B: Environmental, 2009. 88: p. 462-469.
    32. Zhang, T., H. Zhu, and J.-P. Croue, Production of sulfate radical from peroxymonosulfate induced by a magnetically separable CuFe2O4 spinel in water: efficiency, stability, and mechanism. Environmental Science & Technology, 2013. 47: p. 2784-2791.
    33. Shi, P., et al., Supported Co3O4 on expanded graphite as a catalyst for the degradation of Orange II in water using sulfate radicals. Desalination and Water Treatment, 2014. 52: p. 3384-3391.
    34. Lin, H., J. Wu, and H. Zhang, Degradation of clofibric acid in aqueous solution by an EC/Fe3+/PMS process. Chemical Engineering Journal, 2014. 244: p. 514-521.
    35. Hussain, I., et al., Degradation of p-chloroaniline by persulfate activated with zero-valent iron. Chemical Engineering Journal, 2012. 203: p. 269-276.
    36. Liang, C.J., et al., Thermally activated persulfate oxidation of Trichloroethylene (TCE) and 1,1,1-Trichloroethane (TCA) in aqueous systems and soil slurries. Soil and Sediment Contamination, 2003. 12(2): p. 207-228.
    37. Huang, K.-C., R.A. Couttenye, and G.E. Hoag, Kinetics of heat-assisted persulfate oxidation of methyl tert-butyl ether (MTBE). Chemosphere, 2002. 49(4): p. 413-420.
    38. Tsitonaki, A., B.F. Smets, and P.L. Bjerg, Effects of heat-activated persulfate oxidation on soil microorganisms. Water Res, 2008. 42(4-5): p. 1013-22.
    39. Peyton, G.R., The free-radical chemistry of persulfate-based total organic carbon analyzers. Marine Chemistry, 1993. 41: p. 91-103.
    40. Shih, Y.J., et al., Mineralization and deflourization of 2,2,3,3-tetrafluoro-1-propanol (TFP) by UV/persulfate oxidation and sequential adsorption. Chemosphere, 2012. 89(10): p. 1262-6.
    41. Olmez-Hanci, T. and I. Arslan-Alaton, Comparison of sulfate and hydroxyl radical based advanced oxidation of phenol. Chemical Engineering Journal, 2013. 224: p. 10-16.
    42. Shah, N.S., et al., Efficient removal of endosulfan from aqueous solution by UV-C/peroxides: a comparative study. J Hazard Mater, 2013. 263 Pt 2: p. 584-92.
    43. Sahoo, M.K., et al., Improving the operational parameters with high electrical energy efficiency for UVC induced advanced oxidation and mineralization of Acid blue 29: Generation of eco-friendly effluent. Separation and Purification Technology, 2013. 106: p. 110-116.
    44. Wang, C.-W. and C. Liang, Oxidative degradation of TMAH solution with UV persulfate activation. Chemical Engineering Journal, 2014. 254: p. 472-478.
    45. Atkins, P.W., M.C.R. Symons, and P.A. Trevalion, Evidence for pairwise trapping of photolytic free radicals. Proceedings of the Chemical Society, 1963: p. 222.
    46. Miroshnichenko, A.G. and V.A. Lunenok-Burmakina, A quantum-mechanical study of the structure of inorganic derivatives of hydrogen peroxide. Theoretical and Experimental Chemistry, 1975. 11(3): p. 320-325.
    47. Antoniou, M.G., A.A. de la Cruz, and D.D. Dionysiou, Degradation of microcystin-LR using sulfate radicals generated through photolysis, thermolysis and e− transfer mechanisms. Applied Catalysis B: Environmental, 2010. 96(3-4): p. 290-298.
    48. Herrmann, H., On the photolysis of simple anions and neutral molecules as sources of O-/OH, SOx- and Cl in aqueous solution. Phys Chem Chem Phys, 2007. 9(30): p. 3935-64.
    49. Mark, G., et al., The photolysis of potassium peroxodisulphate in aqueous solution in the presence of tert-butanol: a simple actinometer for 254 nm radiation. Journal of Photochemistry and Photobiology A: Chemistry, 1990. 55: p. 157-168.
    50. Buxton, G.V., et al., Critical review of rate constants for reactions of hydrated electrons, hydrogen atoms and hydroxyl radicals (‧OH/‧O-) in aqueous solution. Journal of Physical and Chemical Reference Data, 1988. 17(2): p. 513-531.
    51. Eberson, L., Electron transfer reactions in organic chemistry. 1987, Berlin: Spring-Verlag.
    52. Criquet, J. and N. Karpel Vel Leitner, Electron beam irradiation of aqueous solution of persulfate ions. Chemical Engineering Journal, 2011. 169(1-3): p. 258-262.
    53. Criquet, J. and N.K. Leitner, Degradation of acetic acid with sulfate radical generated by persulfate ions photolysis. Chemosphere, 2009. 77(2): p. 194-200.
    54. Chawla, O.P. and R.W. Fessenden, Electron spin resonance and pulse radiolysis studies of some reactions of SO4• - The Journal of Physical Chemistry, 1975. 79(24): p. 2693-2700.
    55. Neta, P., et al., Rate constants and mechanism of reaction of SO4• - with aromatic compounds. Journal of the American Chemical Society, 1977. 99(1): p. 163-164.
    56. Madhavan, V., H. Levanon, and P. Neta, Decarboxylation by SO4• - radicals. Radiation Research, 1978. 76: p. 15-22.
    57. 張全興, 高級氧化技術處理薄膜液晶顯示器廠剝離液廢水. 2002, 元智大學化學工程學系.
    58. 許美論, 半導體及光電事業排放含氮有機物之生物分解特性研究. 2003, 國立中山大學環境工程學系.
    59. Development of Advanced Oxidation Processes Treatment Facility for Wasted-solvent Wastewater Generated from High-tech Industry. 2005, No. EPA-94-U1U1-04-014, Taiwan EPA.
    60. Muruganandham, M., S. Chen, and J. Wu, Mineralization of N-methyl-2-pyrolidone by advanced oxidation processes. Separation and Purification Technology, 2007. 55(3): p. 360-367.
    61. Hsieh, F.C., J.C. Lou, and C.S. Chiou, Use of UV/O3 to aqueous mineralize N-Methyl-2-Pyrrolidinone. Practice Periodical of Hazardous, Toxic, and Radioactive Waste Management, 2009. 13: p. 120-125.
    62. Zolfaghari, A., H.R. Mortaheb, and F. Meshkini, Removal ofN-Methyl-2-pyrrolidone by Photocatalytic Degradation in a Batch Reactor. Industrial & Engineering Chemistry Research, 2011. 50(16): p. 9569-9576.
    63. House, D.A., Kinetics and mechanism of oxidations by peroxydisulfate. Chemical Reviews, 1962. 62(3): p. 185-203.
    64. Pereira, V.J., et al., UV degradation kinetics and modeling of pharmaceutical compounds in laboratory grade and surface water via direct and indirect photolysis at 254 nm. Environmental Science & Technology, 2007. 41: p. 1682-1688.
    65. Liang, C.J., Z.S. Wang, and C.J. Bruell, Influence of pH on persulfate oxidation of TCE at ambient temperatures. Chemosphere, 2007. 66(1): p. 106-13.
    66. Calabrese, E.J., P.T. Kostecki, and J. Dragun, ISCO Technology Overview: Do you really understand the chemistry?, in Contaminated Soils, Sediments and Water: Successes and Challenges 2006, Springer: US. p. 287-308.
    67. Bielski, B.H.J., et al., Reactivity of HO2• /O2• - radicals in aqueous solution. Journal of Physical and Chemical Reference Data, 1985. 14: p. 1041-1077.
    68. Cooper, W.J., et al., Photochemical formation of hydrogen peroxide in natural waters exposed to sunlight. Environmental Science & Technology, 1988. 22(10): p. 1156-1160.
    69. O'Sullivan, D.W., et al., Photochemical production of hydrogen peroxide and methylhydroperoxide in coastal waters. Marine Chemistry, 2005. 97(1-2): p. 14-33.
    70. Du, Y., et al., Photodecomposition of 4-chlorophenol by reactive oxygen species in UV/air system. J Hazard Mater, 2011. 186(1): p. 491-6.
    71. Zhao, G., X. Lu, and Y. Zhou, Aniline degradation in aqueous solution by UV-aeration and UV-microO3 processes: Efficiency, contribution of radicals and byproducts. Chemical Engineering Journal, 2013. 229: p. 436-443.
    72. Bolton, J.R., et al., Figures-of-merit for the technical development and application of advanced oxidation technologies for both electric- and solar-driven systems. Pure and Applied Chemistry, 2001. 73(4): p. 627-6

    無法下載圖示 校內:2017-08-26公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE