| 研究生: |
高鳳珠 Kao, Fong-Chu |
|---|---|
| 論文名稱: |
(GL1, GL2) 在有限體上的 Theta 對應 The Theta Correspondence of (GL1, GL2) over a Finite Field |
| 指導教授: |
潘戍衍
Pan, Shu-Yen |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 數學系應用數學碩博士班 Department of Mathematics |
| 論文出版年: | 2003 |
| 畢業學年度: | 91 |
| 語文別: | 英文 |
| 論文頁數: | 26 |
| 中文關鍵詞: | 群表現 |
| 外文關鍵詞: | epresentation, theta correspondence |
| 相關次數: | 點閱:62 下載:3 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
Representation of a finite group in a vector space is a homomophism from the finite group into the vector space.
Clearly, it is a square matrice. Weil representation is a kind of special representation. By decomposing Weil representation of Sp2 and Sp4, we can find the theta correspondence of (GL1(F),GL1(F)) and (GL1(F),GL2(F)) over a finite field F. In the process, one can know the correspondence between GL1(F) and GL1(F) (resp. GL1(F) and GL2(F)) in Sp2 (resp. Sp4).
W. Fulton and J. Harris, Representation theory,
Springer-Varlag, New York, 1991.
P. Gerardin, Weil representations associated to finite
fields, J. Algebra. 46 (1977), 54--101.
R. Howe, Invariant theory and duality for classical groups
over finite fields with applications to their singular representation
theory, preprint.
H-C. Li, A short course on linear representations of finite
groups, preprint.
S-Y. Pan, Depth preservation in local theta correspondence,
Duke Math. Journal. 113 (2002), 531--592.
S-Y. Pan, Local theta correspondence of depth zero
representations and theta dichotomy, J. Math. Soc. Japan.
54 (2002), 793--845.
D. Prasad, Weil representation, Howe duality, and the theta
correspondence, Centre de Recherches Mathematiques CRM Proceedings and
Lecture Notes. 1 (1993), 105--111.
B. Roberts, The Weil representation and dual pair, Lecture
notes in the 1994 university of maryland conference
on the theta correspondence, dual pairs and automorphic forms.
B. Srinivasan, The characters of the finite sympiectic
group Sp(4,q), Trans. Amer. Math. Soc. 131 (1968), 488--525.
J.-P. Serre, Linear representations of finite groups
(translated by L. Scott), Springer-Varlag, New York, 1977.