簡易檢索 / 詳目顯示

研究生: 高鳳珠
Kao, Fong-Chu
論文名稱: (GL1, GL2) 在有限體上的 Theta 對應
The Theta Correspondence of (GL1, GL2) over a Finite Field
指導教授: 潘戍衍
Pan, Shu-Yen
學位類別: 碩士
Master
系所名稱: 理學院 - 數學系應用數學碩博士班
Department of Mathematics
論文出版年: 2003
畢業學年度: 91
語文別: 英文
論文頁數: 26
中文關鍵詞: 群表現
外文關鍵詞: epresentation, theta correspondence
相關次數: 點閱:62下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • Representation of a finite group in a vector space is a homomophism from the finite group into the vector space.
    Clearly, it is a square matrice. Weil representation is a kind of special representation. By decomposing Weil representation of Sp2 and Sp4, we can find the theta correspondence of (GL1(F),GL1(F)) and (GL1(F),GL2(F)) over a finite field F. In the process, one can know the correspondence between GL1(F) and GL1(F) (resp. GL1(F) and GL2(F)) in Sp2 (resp. Sp4).

    1. Introduction 2 1.1. Representations of a finite group 3 1.2. Notation 4 2. Reductive dual pair and Weil representation 6 2.1. Definition of Sp2n(F) 6 2.2. Reductive dual pair in Sp2mn(F) 7 2.3. Heisenberg group 8 2.4. Definition of the Weil representation 9 2.5. Theta correspondence 10 3. Theta correspondence of (GL1(F),GL1(F)) 11 3.1. Sp2(F) and SL2(F) 11 3.2. The representations of GL2(F) 12 3.3. The representations of SL2(F) 14 3.4. The connection between Weil representation varpi and the representation of Sp2(F) 15 3.5. Theta correspondence of (GL1(F),GL1(F)) 17 4. Theta correspondence of (GL1(F),GL2(F)) 22 4.1. GL1(F) in Sp4(F) 22 4.2. Theta correspondence of (GL1(F),GL2(F)) 24 References 26

    W. Fulton and J. Harris, Representation theory,
    Springer-Varlag, New York, 1991.

    P. Gerardin, Weil representations associated to finite
    fields, J. Algebra. 46 (1977), 54--101.

    R. Howe, Invariant theory and duality for classical groups
    over finite fields with applications to their singular representation
    theory, preprint.

    H-C. Li, A short course on linear representations of finite
    groups, preprint.

    S-Y. Pan, Depth preservation in local theta correspondence,
    Duke Math. Journal. 113 (2002), 531--592.

    S-Y. Pan, Local theta correspondence of depth zero
    representations and theta dichotomy, J. Math. Soc. Japan.
    54 (2002), 793--845.

    D. Prasad, Weil representation, Howe duality, and the theta
    correspondence, Centre de Recherches Mathematiques CRM Proceedings and
    Lecture Notes. 1 (1993), 105--111.

    B. Roberts, The Weil representation and dual pair, Lecture
    notes in the 1994 university of maryland conference
    on the theta correspondence, dual pairs and automorphic forms.

    B. Srinivasan, The characters of the finite sympiectic
    group Sp(4,q), Trans. Amer. Math. Soc. 131 (1968), 488--525.

    J.-P. Serre, Linear representations of finite groups
    (translated by L. Scott), Springer-Varlag, New York, 1977.

    下載圖示
    2003-07-04公開
    QR CODE