| 研究生: |
魏國治 Wei, Kuo-chih |
|---|---|
| 論文名稱: |
24及60-GHz毫米波CMOS晶片嵌入式天線及平面印刷式手機天線的設計研究 Design of 24/60-GHz CMOS On-Chip Antennas and Planar Printed Antenna for Mobile Handset |
| 指導教授: |
莊惠如
Chuang, Huey-Ru 陳居毓 Chen, Chu-yu |
| 學位類別: |
碩士 Master |
| 系所名稱: |
電機資訊學院 - 電腦與通信工程研究所 Institute of Computer & Communication Engineering |
| 論文出版年: | 2008 |
| 畢業學年度: | 96 |
| 語文別: | 英文 |
| 論文頁數: | 82 |
| 中文關鍵詞: | 毫米波 、CMOS晶片 、晶片嵌入式天線 、手機天線 |
| 外文關鍵詞: | WPAN, CMOS, on-chip antenna, mobile phone antenna, millimeter wave |
| 相關次數: | 點閱:115 下載:2 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文分為兩個部份,第一部份是利用TSMC 0.13-μm及0.18-μm CMOS製程,設計與實作24/60-GHz毫米波晶片嵌入式天線。包含,60-GHz圓形極化微帶天線、24/60-GHz雙頻帶倒L型與倒F型堆疊式天線。天線饋入方式採用微帶線架構。量測考量上,以on-wafer方式量測天線之VSWR與最大功率增益。對於天線之設計與模擬,採用Zealand IE3D及Ansoft HFSS電磁模擬軟體。對於60-GHz圓形極化天線,晶片尺寸為1.4 × 1.4 mm2。在57-64 GHz頻段,天線駐波比的量測值小於3。當頻率為60 GHz時,垂直極化與水平極化的最大功率量測值分別為 -10.6 及 -7.2 dBi。對於24/60-GHz雙頻帶倒L型與倒F型堆疊式天線,晶片尺寸分別為0.9 × 1.0 mm2和0.86 × 1.1 mm2。在24 GHz與57-64 GHz頻段,天線駐波比的量測值皆小於3。當頻率為24 與60 GHz時,倒L型天線的最大功率量測值分別為 -22.5 及 -8.3 dBi;倒F型堆疊式天線的最大功率量測值分別為 -23.0 及 -9.4 dBi。第二部份是多頻帶平面式手機天線之研製,以FR-4板材來實作。本天線可操作在GSM900/DCS1800/WLAN2450或藍牙系統。天線輻射體與天線RF基板之使用面積分別為15×45 mm2和100×45 mm2。天線駐波比量測上,除了GSM900頻帶,其他的通訊頻帶皆小於3.5。當頻率為920 MHz、1795與2450 MHz時,最大功率量測值分別為 0.8、2.4及2.2 dBi。
This thesis presents the design of 24/60-GHz CMOS on-chip antennas and a novel planar mobile antenna. The EM simulator IE3D and EM simulator HFSS are used for design simulation. Firstly, a 60-GHz circularly polarized microstrip antenna fabricated in a 0.13-μm CMOS process is proposed. The on-chip antenna measurements are performed via on-wafer probing. The chip size is 1.4 × 1.4 mm2. The measured input VSWR is less than 3 in the 57-64 GHz band. The measured maximum power gains with vertical and horizontal polarizations are about -10.6 and -7.2 dBi at 60 GHz, respectively. Secondly, two 24/60-GHz dual-band CMOS on-chip antennas fabricated in a 0.18-μm CMOS process are presented. The chip sizes for the inverted-L and stacked inverted-F antennas are 0.9 × 1.0 and 0.86 × 1.1 mm2, respectively. Both the measured input VSWRs are less than 3 in the 24 GHz band and 57-64 GHz band. For the inverted-L antenna, the measured maximum power gains are about -22.5 and -8.3 dBi at 24 and 60 GHz, respectively. For the stacked inverted-F antenna, the measured maximum power gains are about -23.0 and -9.4 dBi at 24 and 60 GHz, respectively. Finally, a multiband planar mobile antenna is fabricated using the FR-4 substrate. The antenna is operated at the GSM900/DCS1800, and WLAN2450 or Bluetooth system. The areas occupied by the antenna radiators and substrate are 15×45 and 100×45 mm2, respectively. Except for the GSM900 band, the measured input VSWR is less than 3.5 in the designed bands. The measured maximum antenna gains are about 0.8, 2.4, and 2.2 dBi at 920 MHz, 1795, and 2450 MHz, respectively.
[1] Federal Communications Commission, “Amendment of parts 2, 15 and 97 of the commission’s rules to permit use of radio frequencies above 40 GHz for new radio applications,” FCC 95-499, ET Docket No. 94-124, RM-8308, Dec. 15, 1995.
[2] IEEE Standard 802.15.3, 2003, “Wireless medium access control and physical layer (PHY) specifications for high rate wireless personal area networks (WPANs),” The Institute of Electrical and Electronic Engineers Inc., New York, 2003.
[3] “FCC 47 CFR 15.255: Operation within the band 57–64GHz,” http://law.justia.com/us/cfr/ti-tle47/47-1.0.1.1.12.3.236.35.html, 1997
[4] Chris Koh. (2003). The Benefits of 60 GHz Unlicensed Wireless Communications. Proxim Corp., Falls Church, VA. [Online]. Available: http://wireless.fcc.gov/outreach/2004broadbandforum/comments/YDI_benefits60GHz.pdf
[5] IBM Thomas J. Watson Research Center . 60-GHz applications. IBM Corp., NY. [Online]. Available: http://domino.research.ibm.com/comm/research_projects.nsf/pages/mmwave.apps.html
[6] ICNIRP, “Guidelines for limiting exposure to time-varying electric, magnetic, and electromagnetic fields ( up to 300GHz),” International Commission on Non-Ionizing Radiation Protection(ICNIRP), Health Physics , vol. 74, pp 494-522, April 1998.
[7] IEEE Standard C95.1-2005, “Safety level with respect to human exposure to radio frequency electromagnetic fields, 3 KHz to 300 GHz,” The Institute of Electrical and Electronic Engineers Inc., New York, 2005.
[8] Kwan-Hoong Ng, “Non-ionizing radiations – sources, biological effects, emissions and exposures,” Proceedings of the International Conference on Non-Ionizing Radiation at UNITEN (ICNIR2003) Electromagnetic Fields and Our Health, Oct. 2003. http://www.who.int/peh-emf/meetings/archive/en/keynote3ng.pdf
[9] P. Smulders, “Exploring the 60 GHz band for local wireless multimedia access: Prospects and future directions,” IEEE Commun. Mag., vol. 40, no. 1, pp. 140–147, Jan. 2002.
[10] K. Ohata, K. Maruhashi, M. Ito, S. Kishimoto, K. Ikuina, T. Hashiguchi, N. Takahashi, and S. Iwanaga, “Wireless 1.25 Gb/s transceiver module at 60 GHz band,” in Proc. IEEE Solid-State Circuits Conf., 2002, pp. 298–299.
[11] B. A. Floyd, S. K. Reynolds, U. R. Pfeiffer, T. Zwick, T. Beukema, and B. Gaucher, “SiGe bipolar transceiver circuits operating at 60 GHz,” IEEE J. Solid-State Circuits, vol. 40, no. 1, pp. 156-167, Jan. 2005.
[12] C. H. Doan, S. Emami, A. M. Niknejad, and R. W. Brodersen, “Design of CMOS for 60 GHz applications,” in Proc. IEEE Solid-State Circuits Conf., 2004, pp. 440-449.
[13] H.-R. Chuang, S.-W. Kuo, C.-C. Lin, and L.-C. Kuo, "A 60 GHz millimeter-wave CMOS RFIC-on-chip dipole antenna," Microwave Journal, vol. 50, no. 1, pp. 144-146, Jan. 2007.
[14] S.-S. Hsu, K.-C. Wei, C.-Y. Hsu, and H.-R. Chuang, “A 60-GHz millimeter-wave CPW-fed Yagi–antenna fabricated using 0.18-μm CMOS technology,” IEEE Electron Device Lett., vol. 29, no. 6, pp. 625-627, Jun. 2008.
[15] D. Neculoiu, P. Pons, M. Saadaoui, L. Bary, D. Vasilache, K. Grenier, D. Dubuc, A. Muller, and R. Plana, “membrane supported Yagi–Uda antennae for millimeter-wave applications,” in Proc. Int. Elect. Eng. Microw. Antennas Propag., vol. 151, 2004, pp. 311–314
[16] B. Chen, Y. D. Lin, T. S. Duh, and W. J. Lin, “Integrated antennason Si, proton-implanted Si, and silicon-on-quartz,” in IEDM Tech. Dig., 2001, pp. 903–906.
[17] Y. P. Zhang, M. Sun, and L. H. Guo, “On-chip antennas for 60-GHz radios in silicon technology,” IEEE Trans. Electron Devices., vol. 52, no. 7, pp. 1664-1668, Jul. 2005.
[18] G. A. Deschamps, “Microstrip microwave antennas,” 3rd USAF Symposium On Antennas, 1953.
[19] D. M. Pozar and D. H. Schaubert, Microstrip Antennas: The analysis and design of microstrip antennas and arrays, Wiley-IEEE Press, 1995.
[20] K. L. Wong, Compact and broadband microstrip antennas, New York: Wiley, 2002.
[21] K. R. Carver and J. W. Mink, “Microstrip antenna technology,” IEEE Trans. Antennas Propag., vol. AP-29, pp. 2–24, Jan. 1981.
[22] M. K. Chirala and B. A. Floyd, “Millimeter-wave Lange and ring hybrid couplers in a silicon technology for E-band applications,” in IEEE MTT-S Int. Microw. Symp. Dig., San Francisco, CA, Jun. 11–16, 2006, pp. 1547 – 1550.
[23] M. K. Chirala and C. Nguyen, “Multilayer design techniques for extremely miniaturized CMOS microwave and millimeter-wave distributed passive circuits,” IEEE Trans. Microw. Theory Tech., vol. 54, no.12, pp.4218 – 4224, Dec. 2006.
[24] H.-Y. Chang, P.-S. Wu, T.-W. Huang, H. Wang, C.-L. Chang, and J. G. J. Chern, “Design and analysis of CMOS broad-band compact high-linearity modulators for gigabit microwave/millimeter-wave applications,” IEEE Trans. Microw. Theory Tech., vol. 54, no. 1, pp.4218 – 4224, Jan. 2006.
[25] D. M. Pozar, Microwave engineering, 3rd ed., New York: Wiley, 2004.
[26] IE3D. v10.0 User Manual. Fremont, CA, USA. Zeland Software Inc, 2003
[27] T. K. Lo, C. O. Ho, Y. Hwang, E. K. W. Lam, and B. Lee, “Miniature aperture-coupled microstrip antenna of very high permittivity,” Electron. Lett., vol. 33, pp. 9–10, Jan. 1997.
[28] R. Waterhouse, “Small Microstrip patch antenna,” Electron. Lett., vol. 31, pp. 604–605, Apr. 1995.
[29] W. S. Chen, C. K. Wu, and K. L. Wong, “Square-ring microstrip antenna with a cross strip for compact circular polarization operation,” IEEE Trans. Antennas Propagat., vol. 47, pp. 1566–1568, Oct. 1999.
[30] J.-Y. Park, C. Caloz, Y. Qian and T. Itoh, “A compact circularly polarized subdivided microstrip patch antenna,” IEEE Microw. Wireless Compon. Lett., vol. 12, no. 1, pp. 18 – 19, Jan. 2002.
[31] C. Y. Huang, J. Y. Wu, and K. L. Wong, “High-gain compact circularly polarized microstrip antenna,” Electron. Lett., vol. 34, pp. 712–713, Apr. 1998.
[32] H.-R. Chuang and L.-C. Kuo, “3-D FDTD design analysis of a 2.4 GHz polarization-diversity printed dipole-antenna with integrated balun and polarization-switching circuit for WLAN and wireless communication applications,” IEEE Trans. Microw. Theory Tech., vol. 51, no. 2, pp.374-381, Feb 2003.
[33] ITU page on definitions of ISM bandswebsite:
http://www.itu.int/ITU-R/terrestrial/faq/index.html
[34] C. Cao, Y. Ding, X. Yang, J.-J. Lin, A. K. Verma, J. Lin, F. Martin, and K. K. O, “A 24-GHz transmitter with an on-chip antenna in 130-nm CMOS,” VLSI Circuits Digest of Technical Papers. 2006 Symposium on, Jun. 2006, pp. 148-149.
[35] I.-F. Chen and C.-M. Peng, “Microstrip-fed dual-U-shaped printed monopole antenna for dual-band wireless communication applications,” Electron. Lett., vol. 39, pp. 955–956, Jun. 2003.
[36] Y.-L. Kuo and K.-L. Wong, “Printed double-T monopole antenna for 2.4/5.2 GHz dual-band WLAN operations,” IEEE Trans. Antennas Propag., vol. 51, pp. 2187–2192, Sep. 2003.
[37] Y.-Y. Wang and S. -J. Chung, “A new dual-band antenna for WLAN applications,” in Proc IEEE AP-S Int. Symp., Jun. 2004, vol. 3, pp. 2611–2614.
[38] E. S. Angelopoulos, A. I. Kostaridis, and D. I. Kaklamani, “A novel dual-band F-inverted antenna printed on a PCMCIA card,” Microw. Opt. Technol. Lett., vol. 42, pp. 153–156, May 2004.
[39] L. Liu, S. Zhu, and R. Langley, “Dual-band triangular patch antenna with modified ground plane,” Electron. Lett., vol. 43, pp. 140–141, Feb. 2007.
[40] H.-D. Chen, J.-S. Chen, and Y.-T. Cheng, “Modified inverted-L monopole antenna for 2.4/5 GHz dual-band operations,” Electron. Lett., vol. 39, pp. 1567–1568, Oct. 2003.
[41] G. Augustin, S. V. Shynu, P. Mohanan, C. K. Aanandan, and K. Vasudevan, “Compact dual-band antenna for wireless access point,” Electron. Lett., vol. 42, pp. 502–503, Apr. 2006.
[42] Y.-D. Lin and P.-L. Chi, “Tapered bent folded monopole for dual-band wireless local area network (WLAN) systems,” IEEE Antennas Wireless Propag. Lett., vol. 4, pp. 355–357, 2005.
[43] HFSS v10.0 User Manual. Pittsburgh, PA, Ansoft Corporation, 2005.
[44] C. Soras, M. Karaboikis, G. Tsachtsiris, and V. Makios, “Analysis and design of an inverted-F antenna printed on a PCMCIA card for the 2.4 GHz ISM band” IEEE Antennas Propag. Mag., vol. 44, no. 1, pp. 37 - 44, Feb. 2002.
[45] Y.-L. Kuo, Y.-T. Cheng, and K.-L.Wong, “Printed inverted-F antennas for applications in wireless communication,” in Proc. IEEE AP-S Int. Symp., Jun. 2002, vol. 3, pp. 454–457.
[46] R. N. Simons and R. Q. Lee, “On-wafer characterization of millimeter wave antennas for wireless application,” IEEE Trans. Microw. Theory Tech., vol. 47, no. 1, pp. 92–96, Jan. 1999.
[47] C. A. Balanis, Antenna theory and design, 3rd ed. New York: Wiley, 2005.
[48] S. S. Saunders, Antennas and propagation and antennas for personal communications, New York: Wiley, 1999.
[49] K. Hirasawa and M. Haneishi, Analysis, design, and measurement of small and low-profile antennas, Boston: Artech House, 1992. pp. 161–162.
[50] Y.-X. Guo, I. Ang, and M. Y. W. Chia, “Compact internal multiband antennas for mobile handsets,” IEEE Antennas Wireless Propag. Lett., vol. 2, pp. 143–146, 2003.
[51] Y.-B. Kwon, J.-I. Moon, and S.-O. Park, “An internal triple-band planar inverted-F antenna,” IEEE Antennas Wireless Propag. Lett., vol. 2, pp. 341–344, 2003.
[52] P. Ciais, R. Staraj, G. Kossiavas, and C. Lexey, “Design of an internal quad-band antenna for mobile phones,” IEEE Microw. Wireless Compon. Lett., vol. 14, no. 4, pp. 143–146, Apr. 2004.
[53] Y.-X. Guo, M. Y. W. Chia, and Z. N. Chen, “Miniature built-in multiband antennas for mobile handsets,” IEEE Trans. Antennas Propagat., vol. 52, no. 8, pp. 1936–1944, Aug. 2004.
[54] M. Martinez-Vazquez, O. Litschke, M. Geissler, D. Heberling, A. M. Martinez-Gonzalez, and D. Sanchez-Hernandez, , “Integrated planar multiband antennas for personal communication handsets,” IEEE Trans. Antennas Propagat., vol. 54, no. 2, pp. 384–391, Feb. 2004.
[55] W. Choi, S. kwon, and B. Lee, “Ceramic chip antenna using meander conductor lines,” Electron Lett., vol.37, no.15, pp. 933–934, Jul. 2001.
[56] C.-C. Lin, Y.-J. Chang, and H.-R. Chuang, “Design of a 900/1800 MHz dual-band LTCC chip antenna for mobile communication applications,” Microwave Journal, vol.47, no.1, pp. 78–88, Jan. 2004.
[57] F.-S. Chang, S.-H. Yeh, and K.-L. Wong, “Planar monopole in wrapped structure for low-profile GSM/DCS mobile phone antenna,” Electron Lett., vol.38, no.11, pp. 499–500, May. 2002.
[58] D.-U. Sim and S.-O. Park, “A triple-band internal antenna: design and performance in presence of the handset case, battery, and human head,” IEEE Trans. Electromagn. Compat., vol. 47, no. 3, pp. 658–666, Aug. 2005.
[59] K.-L. Wong, G.-Y. Lee, and T.-W. Chiou, “A low-profile planar monopole antenna for multiband operation of mobile handsets,” IEEE Trans. Antennas Propagat., vol. 51, no. 1, pp. 121–125, Jan. 2003.
[60] Y.-S. Shin, S.-O. Park, and M. Lee, “A broadband interior antenna of planar monopole type in handsets,” IEEE Antennas Wireless Propag. Lett., vol. 4, pp. 9–12, 2005.
[61] X. Jing, Z. Du, and K. Gong, “A compact multiband planar antenna for mobile handsets,” IEEE Antennas Wireless Propag. Lett., vol. 5, pp. 343–345, 2006.
[62] Y.-Y. Wang and S. -J. Chung, “A new dual-band antenna for WLAN applications,” in Proc IEEE AP-S Int. Symp., Jun. 2004, vol. 3, pp. 2611–2614.
[63] J.-S. G. Hong and M. J. Lancaster, Microstrip Filters for RF/Microwave Applications, New York: Wiley, 2001.