簡易檢索 / 詳目顯示

研究生: 林亞秀
Lin, Ya-Hsiu
論文名稱: 膠態雞尾酒有機染料敏化太陽能電池之研究
Gel-State Dye-Sensitized Solar Cells by Using Organic Dye Cocktails
指導教授: 楊毓民
Yang, Yu-Min
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2009
畢業學年度: 97
語文別: 中文
論文頁數: 117
中文關鍵詞: 填補缺陷機制混合增效作用雞尾酒有機染料染料敏化太陽能電池膠態電解質
外文關鍵詞: gel-state DSSC, defects- filling mechanism, synergistic effect, Dye-sensitized solar cell, organic dye cocktails
相關次數: 點閱:156下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 傳統的染料敏化太陽能電池使用釕的聯吡啶錯合物作為染料,雖然有不錯的光電轉換效率,但因為價格昂貴,造成染料敏化太陽能電池成本上的一大負擔。此外,由於使用液態電解質常有溶劑揮發、滲漏的問題,也不利於發展可撓式電池。本研究則使用市售且便宜的有機染料,並透過混合兩種有機染料(雞尾酒)的方式嘗試提升效率並進一步開發膠態雞尾酒有機染料敏化太陽能電池。
    本研究承接先前已完成的四個雙成份系統,選用五種有機染料D149 (D)、Mercurochrome (M)、Eosin Y (E)、Rose bengal (R)、Coumarin 343 (C),新增三個雙成分系統D/E、 D/R 、D/C,累計共七個雙成份系統,以驗證雞尾酒有機染料提升光電轉換效率的可能性及染料單分子層填補缺陷機制的作用。實驗結果顯示M/R, M/E, D/M, D/R, D/E等雙成份系統染料在懸殊比例 (60/1, 100/1)時的電池光電轉換效率會有比具較高效率的單成分染料電池光電轉換效率還高的現象發生。
    本研究亦進一步將這種具有提升效率的雞尾酒有機染料系統運用在膠態電解質染料敏化太陽能電池上。電解質方面是使用標準電解液以10% PVDF-HFP高分子膠化並摻雜10% TiO2的奈米粒子作為膠態電解質,並選用D/ M與D/R雙成份系統來探討膠態電解質與標準電解液在光電轉換效率及壽命的表現。實驗結果顯示,膠態電解質電池的效率和液態電解質電池的效率一樣高,壽命則更長。除了光電轉換效率的測定,本研究亦進行暗電流(dark current)分析,再次驗證染料單分子層填補缺陷機制的作用。

    Although classical dye-sensitized solar cells (DSSCs) with polypyridyl complexes of ruthenium as sensitizers may reach relatively high overall efficiencies, the high price is a big problem. Furthermore, solvent evaporation and leakage of the liquid electrolyte limit the progress in flexible DSSCs. In this study, dye cocktails of commercial and cheap organic dyes were used with the aim to improve the overall efficiency of DSSCs with liquid electrolyte. Moreover, gel-state DSSCs were also developed by using the same dye cocktails.
    Following our previous study of four binary systems, five organic dyes D149 (D)、Mercurochrome (M)、Eosin Y (E)、Rose bengal (R)、Coumarin 343 (C) were used and formed three additional binary systems(D/E、 D/R 、D/C ) in this work to prove the possibility of overall efficiency enhancement by using dye cocktails approach and the defects-filling mechanism. The experimental results showed that minute amounts of dyes, which are the ones with less adsorption ability and lower efficiency, in binary systems (M/R, M/E, D/M, D/R, D/E) can enhance the overall efficiency of DSSCs.
    D/M and D/R dye cocktails were futher applied in gel-state DSSCs by using 10% poly(vinylidene fluoride-co-hexafluoropropylene) (PVDF-HFP) as gelator and 10% TiO2 nanoparticles as fillers. The experimental results revealed that overall efficiency as high as that with liquid electrolyte can be realized by the gel-state DSSCs. And longer lifetime can be achieved. Finally, the defects-filling mechanism in enhancing the overall efficiency was confirmed again by conducting the dark current analyses on the gel-state DSSCs.

    摘要 II Abstract III 誌謝 IV 目錄 V 表目錄 IX 圖目錄 X 第一章緒論 1 1-1前言 1 1-2 研究動機與目的 3 第二章 實驗原理與文獻回顧 4 2-1 色素增感太陽電池 4 2-1.1 色素增感太陽電池之工作原理 4 2-1.2 色素增感太陽電池之發展現況 5 2-2 色素增感太陽電池之光電特性測量 12 2-2.1太陽電池之總效率(Overall Efficiency) 12 2-2.2光電轉化效率(Incident Photo to Current conversion efficiency, IPCE) 15 2-3電化學交流阻抗(Electrochemical Impedance Spectroscopy, EIS)分析 17 2-3.1交流阻抗法之原理 17 2-3.2 應用於色素增感太陽電池分析 19 2-4 文獻回顧 22 2-4.1有機色素與共增感吸附 22 2-4.2共增感吸附之微量成份促進效應 27 2-4.3 膠態電解質 34 第三章 實驗儀器與方法 38 3-1儀器設備 38 3-1.1 超音波震盪器(Ultrasonic cleaner) 38 3-1.2 旋轉塗佈機(Spin coater) 38 3-1.3 高溫爐 39 3-1.4 表面輪廓儀(Alpha step) 39 3-1.5掃描式電子顯微鏡(Scanning Electron Microscopy, SEM) 40 3-1.6 X光繞射分析儀(X-Ray Diffractometry, XRD) 41 3-1.7 紫外光/可見光光譜儀(UV-vis spectrophotometer) 41 3-1.8 離子濺鍍機(Sputter) 42 3-1.9 太陽光模擬器(Solar simulator) 42 3-1.10 定電位/定電流儀(Potentiostat/Galvanostat) 43 3-1.11 光電轉化效率測定系統(IPCE measurement) 44 3-1.12 Mili-Q超純水系統 46 3-2 實驗藥品 47 3-3實驗方法 50 3-3.1 TiO2膠體溶液製備 50 3-3.2 TiO2光電極製備 50 3-3.3色素吸附 52 3-3.4吸附動力學分析 52 3-3.5對電極製備 53 3-3.6電解液製備 53 3-3.7電池組裝 53 3-3.8 IPCE之量測 54 3-3.9總效率之量測 55 第四章 結果與討論 56 4-1 TiO2奈米晶薄膜光電極特性分析 56 4-1.1 TiO2光電極的厚度分析 56 4-1.2 表面型態與TiO2的相態 58 4-2有機染料分子的吸收特性分析 60 4-2.1 Mercurochrome 60 4-2.2 Eosin Y 62 4-2.3 Coumarin 343 64 4-2.4 Rose bengal 66 4-2.5 D149 67 4-2.6有機染料雞尾酒染料敏化和微量添加 68 4-2.7有機染料能帶階梯敏化和填補效應 68 4-3 雙成分混合有機染料共敏化太陽能電池的光電特性分析 70 4-3.2 系統(1)─ D149與Eosin Y 78 4-3.3 系統(2)─ D149與Rose bengal 81 4-3.4 系統(3)─ D149與Coumarin343 84 4-3.5 雙成份有機染料系統 87 4-4微量成份促進效應 89 4-4.1 暗電流 89 4-4.2 微量染料添加探討 91 4-5膠態雞尾酒有機染料敏化 92 4-5.1系統(4)─ D149與Mercurochrome 93 4-5.2系統(2)─ D149與Rose bengal 95 4-5.4膠態電解質壽命 99 第五章 結論與建議 101 5-1結論 101 5-2建議 104 參考文獻 105 自述 117

    Adachi, M., Sakamoto, M., Jiu, J. T., Ogata, Y., Isoda, S., “Determination of parameters of electron transport in dye-sensitized solar cells using electrochemical impedance spectroscopy,” Journal of Physical Chemistry B, 110, 13872-13880 (2006).
    Bandara, J., Weerasinghe, H., “Design of high-efficiency solid-state dyesensitized solar cells using coupled dye mixtures,” Solar Energy Materials & Solar Cells, 90, 864–871 (2006).
    Cao, F., Oskam, G.,Searson, P. C., “A solid state, dye sensitized photoelectrochemical cell,” Journal of Physical Chemistry, 99, 17071 (1995)
    Chen, Y. S., Zeng Z. H., Li, C., Wang, W. B., Wang, X. S., Zhang B. W., “Highly efficient co-sensitization of nanocrystalline TiO2 electrodes with plural organic dyes,” New Journal of Chemistry, 29, 773-776 (2005).
    Cid, J. J., Yum, J. H., Jang, S. R., Nazeeruddin, M. K., Eugenia M. F., Palomares, E., Ko, J., Grätzel, M., Torres, T., “Molecular cosensitization for efficient panchromatic dye-sensitized solar cells,” Angewandte Chemie International Edition, 46, 8358–8362 (2007)
    Clifford, J. N., Palomares, E., Nazeeruddin, M. K., Thampi, R., Grätzel, M., Durrant, J. R., “Multistep electron transfer processes on dye co-sensitized nanocrystalline TiO2 films,” Journal of the American Chemical Society, 126, 5670-5671 (2004).
    Ehret, A., Stuhl, L., Spitler, M. T., “Spectral sensitization of TiO2 nanocrystalline electrodes with aggregated cyanine dyes,” Journal of Physical Chemistry B, 105, 9960-9965 (2001).
    Fang, J., Su, L., Wu, J., Shen, Y., Lu, Z., “Fabrication, characterization, and photovoltaic study of dye-co-modified TiO2 electrodes,” New Journal of Chemistry, 21, 1303-1307 (1997).
    Grätzel, M, “Photoelectrochemical cells,” Nature, 414, 338-344 (2001).
    Grätzel, M., “Perspectives for dye-sensitized nanocrystalline solar cells,” Progress in Photovoltaics: Research & Applications, 8, 171-185 (2000).
    Guo, M., Diaoc, P., Rena, Y. J., Mengd, F., Tiand, H., Cai, S. M., “Photoelectrochemical studies of nanocrystalline TiO2 co-sensitized by novel cyanine dyes,” Solar Energy Materials & Solar Cells, 88, 23-35 (2005).
    Han, H. W., Liu, W., Zhang, J., Zhao, X. Z., “A hybrid poly(ethylene oxide)/poly(vinylidene fluoride)/TiO2 nanoparticle solide-state redox electrolyte for dye-sensitized nanocrystalline solar cells,” Advanced Functional Materials, 15, 12, 1940-1944 (2005)
    Hara K., Kurashige, M., Dan-oh, Y., Kasada, C., Shinpo, A., Suga, S., Sayama, K., Arakawa, H., “Design of new coumarin dyes having thiophene moieties for highly efficient organic-dye-sensitized solar cells,” New Journal of Chemistry, 27, 783-785 (2003a).
    Hara, K., Sato, T., Katoh, R., Furube, A., Ohga, Y., Shinpo, A., Suga, S., Sayama, K., Sugihara, H., Arakawa, H., “Molecular design of coumarin dyes for efficient dye-sensitized solar cells,” Journal of Physical Chemistry B, 107, 597-606 (2003b).
    Horiuchi, T., Miura, H, Sumioka, K., Uchida, S., “High efficiency of dye-sensitized solar cells based on metal-free indoline dyes,” Journal of the American Chemical Society, 126, 12218-12219 (2004).
    Ito, S., Miura, H., Uchida, S., Takata, M., Sumioka, K., Liska, P., Comte, P., Pechy, P., Grätzel, M., “High-conversion-efficiency organic dye-sensitized solar cells with a novel indoline dye,” Chemical Communications, 41, 5194-5196 (2008).
    Ito, S., Zakeeruddin, M., Humphry-Baker, R., Liska, P., Charvet, R., Comte, P., Nazeeruddin, M. K., Pechy, P., Takata, M., Miura, H., Uchida, S., Grätzel, M., “High-efficiency organic dye seneitized solar cells controlled by nanocrystalline-TiO2 electrode thickness,” Advanced Materials, 18, 1202-1205 (2006).
    Jana, A. K., Bhowmik, B. B., “Enhancement in power output of solar cells consisting of mixed dyes,” Jourmal of Photochemistry and Photobiology A: Chemistry, 122, 53-56 (1999).
    Kim, K. M., Park, N. G., Kang, M. G., Ryu, K. S., Chang, S. H., “Effect of TiO2 inclusion in the poly(vinylidene fluoride-co-hexafluoropropylene)-based polymer electrolyte of dye-sensitized solar cell,” Bulletin of the Korean Chemical Society, 27, 2, 322-324 (2006)
    Koehorst, R. B. M., Boschloo, G. K., Savenije, T. J.,_Goossens, A., Schaafsma, T. J., “Spectral sensitization of TiO2 substrates by monolayers of porphyrin heterodimers,” Journal of Physical Chemistry B, 104, 2371-2377 (2000).
    Krűger, J., Plass, R., Cevey, L., Piccirelli, M., Grätzel, M., Bach, U., “High efficiency solid-state photovoltaic device due to inhibition of interface charge recombination,” Applied Physics Letter, 79, 2085-2087 (2001)
    Kuang, D., Walter, P., Nűesch, F., Kim, S., Ko, J., Comte, P., Zakeeruddin, S. M., Nazeeruddin, M. K., Grätzel M., “Co-sensitization of organic dyes for efficient ionic liquid electrolyte-based dye-sensitized solar cells,” Langmuir, 23, 10906-10909 (2007)
    Kumara, G. R. A., Kaneko S., Okuya, M., Onwona-Agyeman, B., Konno, A., Tennakone, K., “Shiso leaf pigments for dye-sensitized solid-state solar cell,” Solar Energy Materials & Solar Cells, 90, 1220-1226 (2006).
    Lee, Y. L., Lo, Y. S. “Highly efficient quantum-dot-sensitized solar cell based on co-sensitization of CdS/CdSe,” Advanced Functional Materials, 19, 604-609 (2009)
    Lee, Y. L., Shen, Y. J., Yang, Y. M., “A hybrid PVDF-HFP/nanoparticle gel electrolyte for dye-sensitized solar cell applications,” Nanotechnology, 19, 455201 (2008)
    Mikoshiba, S., 16th European Photovoltaic Solar Energy Conference, 1-5 May Clasgow UK, (2000)
    Nazeeruddin, M. K., Angelis, F. D., Fantacci, S., Sellon, A., Viscardi, G., Liska, P., Ito, S., Takeru, B., Grätzel M., “Combined experimental and DFT-TDDFT computational study of photoelectrochemical cell ruthenium sensitizers,” Journal of the American Chemical Society, 127, 16835-16847 (2005).
    Nazeeruddin, M. K., Humpbry-Baker, R., Liska, P., Grätzel, M., “Investigation of sensitizer adsorption and the influence of protons on current and voltage of a dye-sensitized nanocrystalline TiO2 solar cell,” Journal of Physical Chemistry B, 107, 8981-8987 (2003).
    Nazeeruddin, M. K., Pechy, P., Renouard, T., Zakeeruddin, S. M., Humphry-Baker, R., Comte, P., Liska, P., Cevey, L., Costa, E., Shklover, V., Spiccia, L., Deacon, G., Bignozzi, C. A., Grätzel, M., “Engineering of efficient panchromatic sensitizers for nanocrystalline TiO2-Based solar cells,” Journal of the American Chemical Society, 123, 1613-1624 (2001).
    Nazeeruddin, M. K., Zakeeruddin, S. M., Humphry-Baker, R., Jirousek, M., Liska, P., Vlachopoulos, N., Shklover, V., Fischer, C. H., Gratzel, M., “Acid-Base equilibria of (2,2’-bipyridy-4,4’-dicarboxylic acid) ruthenium(II) complexes and the effect of protonation on charge-transfer sensitization of nanocrystalline titania,” Inorganic Chemistry, 38, 6298-6305 (1999).
    O’Regan, B., and Grätzel, M., “A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films,” Nature , 353, 737 (1991).
    Perera, V. P. S., Pitigala, P. K. D. D. P., Jayaweera, P. V. V., Bandaranayake, K. M. P., and Tennakone, K., “Dye-sensitized solid-state photovoltaic cells based on dye multilayer-semiconductor nanostructures,” J. Phys. Chem. B, 107, 13758-13761 (2003).
    Perera, V. P. S., Pitigala, P. K. D. D. P., Senevirathne, M. K. I., and Tennakone, K., “A solar cell sensitized with three different dyes,” Solar Energy Materials & Solar Cells, 85, 91-98 (2005).
    Pitigala, P. K. D. D. P., Senevirathne, M. K. I., Perera V. P. S. and Tennakone, K., “Dye-multilayer semiconductor nanostructures,” Comptes Rendus Chimie, 9, 605-610 (2006).
    Sayama, K., Tsukagoshi, S., Mori, T., Hara, K., Ohga, Y., Shinpou, A., Abe, Y., Suga, S., Arakawa, H., “Efficient sensitization of nanocrystalline TiO2 films with cyanine and merocyanine organic dyes,” Solar Energy Materials & Solar Cells, 80, 47-71 (2003).
    Schmidt-Mende, L., Bach, U., Humphry-Baker R., Horiuchi, T., Miura, H., Ito, S., Uchida, S., Grätzel, M., “Organic dye for highly efficiency solid-state dye-sensitized solar cells,” Advanced Materials, 17, 7, 813-815 (2005)
    Stergiopoulos, S., Arabatzis, I. M., Katsaros, G., Falaras, P., “Binary polyethylene oxide/titania solid-state redox electrolyte for highly efficiency nanocrystalline TiO2 photoelectrochemical cells,” Nano Letters, 2, 11, 1259-1261 (2002)
    Tennakone, K., Kumara, G. R. R. A., Kottegoda, I. R. M., Wijayantha, K. G. U., Perera, V. P. S., “A solid-state photovoltaic cell sensitized with a ruthenium bipyridyl complex,” Journal of Physics D: Applied Physics, 31, 1492-1496 (1998).
    Tsubomura, H., Matsumura, M., Nomura, Y., Amamiya, T., “Dye sensitized zinc oxide aqueous electrolyte: platinum photocell,” Nature, 261, 402 (1976).
    Wang, X. F., Xiang, J. F., Wang, P., Koyama, Y., Yanagida, S., Wada, Y., Hamada, K., Sasaki, S., Tamiaki, H., “Dye-sensitized solar cells using a chlorophyll a derivative as the sensitizer and carotenoids having different conjugation lengths as redox spacer,” Chemical Physics Letters, 408, 409-414 (2005a).
    Wang, X. F., Kakitani, Y., Xiang, J. F., Koyama, Y., Rondonuwu, F. S., Nagae, H., Sasaki, S., Tamiaki, H., “Generation of carotenoid radical cation in the vicinity of a chlorophyll derivative bound to titanium oxide, upon excitation of the chlorophyll derivative to the Qy state, as identified by time-resolved absorption spectroscopy,” Chemical Physics Letters, 416, 229-233 (2005b).
    Wang, P., Zakeeruddin, S. M., Grätzel M., “Solidifying liquid electrolytes with fluorine polymer and silica nanoparticles for quasi-solid dye-sensitized solar cells,” Journal of fluorine chemistry, 125, 8, 1241-1245 (2004)
    Wang, P., Zakeeruddin, S. M., Humphry-Baker, R., Moser, J. E., Grätzel, M., “Molecular-scale interface engineering of TiO2 nanocrystalline: improving the efficiency and stability of dye-sensitized solar cells,” Advanced Materials, 15, 2101-2104 (2003a).
    Wang, Z. S., Cui, Y., Yasufumi D. O., Kasada, C., Shinpo, A., Hara K., “Thiophene-functionalized coumarin dye for efficient dye-sensitized solar cells: electron lifetime improved by coadsorption of deoxycholic acid,” Journal of Physical Chemistry C, 111, 7224-7230, (2007)
    Wongcharee, K., Meeyoo, V., Chavadej, S., “Dye-sensitized solar cell using natural dyes extracted from rosella and blue pea flowers,” Solar Energy Materials & Solar Cells, 91, 566-571 (2007).
    Yoshida, T., Iwaya, M., Ando, H., Oekermann, T., Nonomura, K., Schlettwein, D., Wöhrlec, D., Minoura, H., “Improved photoelectron -chemical performance of electrodeposited ZnO/EosinY hybrid thin films by dye re-adsorption,” Chemical Communications, 4, 400-401 (2004).
    Yum, J. H., Jang, S. R., Walter, P., Geiger, T. Nuesch, F., Kim, S. H., Ko, J. J., Gratzel, M., Nazeeruddin, M. K., “Efficient co-sensitization of nanocrystalline TiO2 films by organic sensitizer,” Chemical Communications, 44, 4680-4682 (2007).
    Zhang, D. S., Wang, W. B., Liu, Y., Xiao, X. R., Zhao, W., Zhang B. W., Cao, Yi., “Photosensitization of nanocrystalline TiO2 electrodes by squarylium cyanine incorporated with a ruthenium bipyridyl complex,” Journal of Photochemistry and Photobiology A: Chemistry, 135, 235-240 (2000).
    Zhang, D., Yoshida, T., Minoura, H., “Low temperature synthesis of porous nanocrystalline TiO2 thick film for dye-sensitized solar sells by hydrothermal crystallization,” Chemistry Letter, 9, 874-875 (2002)
    Zhao, W., Hou, Y. J., Wang, X. S., Zhang, B. W., Cao, Y., Yang, R., Wang, W. B., Xiao, X. R., “Study on squarylium cyanine dyes for photoelectric conversion,” Solar Energy Materials & Solar Cells , 58, 173-183 (1999).
    Zuo, P., Li, C., Wu, Y. S., Ai, X. C., Wang, X. S., Zhang, B. W., Zhang, J. P., “Mechanism of squarylium cyanine and Ru(dcbpy)2(NCS)2 co-sensitization of colloidal TiO2,” Journal of Photochemistry and Photobiology A: Chemistry, 183, 138-145 (2006).

    許志偉、陳宏仁、林怡君、王立義,「有機/無機太陽能電池之現況發展」,化工,第52卷,第2期,49-58 (2005)。
    鄭揚霖,「雞尾酒有機色素增感太陽電池之研究」成功大學化學工程系碩士論文 (2006)。
    黃士哲,「有機色素增感太陽電池-雞尾酒色素/色素能帶階梯增感之探討」成功大學化學工程系碩士論文 (2007)。
    鄭揚霖、黃士哲、陳政廷、楊毓民,「色素增感太陽電池的發展現況」,化工技術,第15卷,第6期,156-169 (2007)。
    陳政廷,「混合有機色素分子共增感對色素增感太陽電池光電轉換效率的影響」成功大學化學工程系碩士論文 (2008)。
    沈育仁,「CdS量子點敏化劑及高分子/奈米粒子複合膠態電解質在染料敏化太陽能電池應用之研究」成功大學化學工程系博士論文 (2008)。

    網頁介紹
    色素增感太陽能電池總整理(日本特許廰):
    http://www.jpo.go.jp/shiryou/s_sonota/hyoujun_gijutsu/solar_cell/01_mokuji.htm
    色素增感太陽能電池年表:
    http://kuroppe.tagen.tohoku.ac.jp/~dsc/history-j.htm
    色素太陽能電池實體介紹:
    http://apchem.gifu-u.ac.jp/~pcl/special/products_j.htm#racing
    太陽光電示範系統推廣網站:
    http://solarpv.itri.org.tw/memb/main.aspx
    矽型太陽能電池的介紹(益通光能):
    http://www.e-tonsolar.com/edu.htm
    G24網站:
    http://g24innovations.com/home.html

    下載圖示 校內:2010-07-14公開
    校外:2010-07-14公開
    QR CODE