| 研究生: |
陳宇舜 Chen, Yu-Shun |
|---|---|
| 論文名稱: |
二維過渡金屬二硫屬化物與其異質結構之量子傳輸行為的第一原理計算研究 Quantum Transport Properties of Two Dimensional Transition Metal Dichalcogenides and Their Heterostructures- A First Principles Study |
| 指導教授: |
蘇彥勳
Su, Yen-Hsun |
| 共同指導教授: |
關肇正
Kaun, Chao-Cheng |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 材料科學及工程學系 Department of Materials Science and Engineering |
| 論文出版年: | 2018 |
| 畢業學年度: | 106 |
| 語文別: | 中文 |
| 論文頁數: | 66 |
| 中文關鍵詞: | 第一原理 、過渡金屬二硫屬化物 、異質結構 |
| 外文關鍵詞: | first-principles, TMDs, heterostructure |
| 相關次數: | 點閱:81 下載:3 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
二維過渡金屬二硫屬化物為極具潛力的新穎材料,尤其是不同材料或堆疊方式組成的異質結構,除了具有二維材料尺度上的優勢,其能帶結構的可調控性,有助於應用於半導體及光電元件中。
本研究利用第一原理計算探討單層二硫化鉬、二硫化鎢及其組成之異質結構的導電行為,討論內容包含利用能帶結構、態密度及穿隧圖譜分析單層二硫化鉬及二硫化鎢能隙大小、導帶及價帶主導軌域與載子傳輸異向性;垂直式異質結構則利用實空間態密度,分析AB1、AA1及AA3三種堆疊方式及20%~100%的覆蓋面積比例之間的變化關係對於層間耦合的影響,並且解釋載子傳輸行為;水平式異質結構則依據介面的不同,分析載子於扶手型及鋸齒型方向上傳輸的差異。
我們的研究結果顯示,單層二硫化鉬及單層二硫化鎢為直接能隙半導體,垂直異質結構以AB1及AA1堆疊方式最為穩定,並且在AA1-100%的堆疊下,載子傳輸係數最高,水平異質結構則是以鋸齒型方向的傳輸性質較好,意味著異質結構可以藉由堆疊方式、覆蓋面積比例及傳輸方向來調控載子的傳輸行為,增加應用上的多元性。
Two-dimensional transition metal dichalcogenides (TMDs) are one of the most promising material, especially in their heterostructure forms. The advantages of 2D TMDs not only come from their low dimensional structures but also the controllable electronic properties which are with fully potential in semiconductor or photoelectric applications.
We carry out first principles calculations to study conducting behavior of monolayer MoS2, WS2 and their heterostructures. The band structures, DOS and transmission spectra are used to analyze the electric properties of monolayer MoS2 and WS2. In the vertical heterostructures case, we discuss the relation between LDOS and transmission spectra under different stacking types and coverage ratio from 20% to 100%. In addition to vertical heterostructures, the carrier transmission along armchair or zigzag direction is calculated in lateral heterostructures.
Our results reveal that both monolayer MoS2 and WS2 are direct bandgap semiconductors. The AB1 and AA1 stacking types are more stable than AA3 in the vertical heterostructures and the AA1-100% has the highest transmission coefficient. The carrier shows better transmission along zigzag direction than armchair in the lateral heterostructures. Based on our calculations, we shows that their electronic properties depend on stacking types, coverage ratios or the transmission direction, which have multiple applications.
[1] C. Lee, X. D. Wei, J. W. Kysar, and J. Hone, "Measurement of the elastic properties and intrinsic strength of monolayer graphene," Science, vol. 321, pp. 385-388, 2008.
[2] P. Miro, M. Audiffred, and T. Heine, "An atlas of two-dimensional materials," Chemical Society Reviews, vol. 43, pp. 6537-6554, 2014.
[3] K. I. Bolotin, K. J. Sikes, Z. Jiang, M. Klima, G. Fudenberg, J. Hone, et al., "Ultrahigh electron mobility in suspended graphene," Solid State Communications, vol. 146, pp. 351-355, 2008.
[4] S. V. Morozov, K. S. Novoselov, M. I. Katsnelson, F. Schedin, D. C. Elias, J. A. Jaszczak, et al., "Giant intrinsic carrier mobilities in graphene and its bilayer," Physical Review Letters, vol. 100, pp. 1-5, 2008.
[5] B. Radisavljevic, A. Radenovic, J. Brivio, V. Giacometti, and A. Kis, "Single-layer MoS2 transistors," Nature Nanotechnology, vol. 6, pp. 147-150, 2011.
[6] H. Schmidt, F. Giustiniano, and G. Eda, "Electronic transport properties of transition metal dichalcogenide field-effect devices: surface and interface effects," Chemical Society Reviews, vol. 44, pp. 7715-7736, 2015.
[7] S. B. Desai, S. R. Madhvapathy, A. B. Sachid, J. P. Llinas, Q. X. Wang, G. H. Ahn, et al., "MoS2 transistors with 1-nanometer gate lengths," Science, vol. 354, pp. 99-102, 2016.
[8] H. Liu, A. T. Neal, and P. D. D. Ye, "Channel length scaling of MoS2 MOSFETs," Acs Nano, vol. 6, pp. 8563-8569, 2012.
[9] A. Kuc, N. Zibouche, and T. Heine, "Influence of quantum confinement on the electronic structure of the transition metal sulfide TS2," Physical Review B, vol. 83, pp. 1-4, 2011.
[10] C. Lee, H. Yan, L. E. Brus, T. F. Heinz, J. Hone, and S. Ryu, "Anomalous lattice vibrations of single- and few-layer MoS2," Acs Nano, vol. 4, pp. 2695-2700, 2010.
[11] G. Z. Magda, J. Peto, G. Dobrik, C. Hwang, L. P. Biro, and L. Tapaszto, "Exfoliation of large-area transition metal chalcogenide single layers," Scientific Reports, vol. 5, pp. 1-5, 2015.
[12] J. N. Coleman, M. Lotya, A. O'Neill, S. D. Bergin, P. J. King, U. Khan, et al., "Two-dimensional nanosheets produced by liquid exfoliation of layered materials," Science, vol. 331, pp. 568-571, 2011.
[13] D. Yang and R. F. Frindt, "Li-intercalation and exfoliation of WS2," Journal of Physics and Chemistry of Solids, vol. 57, pp. 1113-1116, 1996.
[14] R. K. Jha and P. K. Guha, "Liquid exfoliated pristine WS2 nanosheets for ultrasensitive and highly stable chemiresistive humidity sensors," Nanotechnology, vol. 27, pp. 1-11, 2016.
[15] Y. H. Lee, X. Q. Zhang, W. J. Zhang, M. T. Chang, C. T. Lin, K. D. Chang, et al., "Synthesis of large-area MoS2 atomic layers with chemical vapor deposition," Advanced Materials, vol. 24, pp. 2320-2325, 2012.
[16] H. R. Gutierrez, N. Perea-Lopez, A. L. Elias, A. Berkdemir, B. Wang, R. Lv, et al., "Extraordinary room-temperature photoluminescence in triangular WS2 monolayers," Nano Letters, vol. 13, pp. 3447-3454, 2013.
[17] A. Berkdemir, H. R. Gutierrez, A. R. Botello-Mendez, N. Perea-Lopez, A. L. Elias, C. I. Chia, et al., "Identification of individual and few layers of WS2 using Raman spectroscopy," Scientific Reports, vol. 3, pp. 1-8, 2013.
[18] F. M. Wang, T. A. Shifa, X. Y. Zhan, Y. Huang, K. L. Liu, Z. Z. Cheng, et al., "Recent advances in transition-metal dichalcogenide based nanomaterials for water splitting," Nanoscale, vol. 7, pp. 19764-19788, 2015.
[19] D. Voiry, H. Yamaguchi, J. W. Li, R. Silva, D. C. B. Alves, T. Fujita, et al., "Enhanced catalytic activity in strained chemically exfoliated WS2 nanosheets for hydrogen evolution," Nature Materials, vol. 12, pp. 850-855, 2013.
[20] B. Mahler, V. Hoepfner, K. Liao, and G. A. Ozin, "Colloidal synthesis of 1T-WS2 and 2H-WS2 nanosheets: applications for photocatalytic hydrogen evolution," Journal of the American Chemical Society, vol. 136, pp. 14121-14127, 2014.
[21] O. Lopez-Sanchez, D. Lembke, M. Kayci, A. Radenovic, and A. Kis, "Ultrasensitive photodetectors based on monolayer MoS2," Nature Nanotechnology, vol. 8, pp. 497-501, 2013.
[22] Z. Y. Zeng, Z. Y. Yin, X. Huang, H. Li, Q. Y. He, G. Lu, et al., "Single-layer semiconducting nanosheets: high-yield preparation and device fabrication," Angewandte Chemie-International Edition, vol. 50, pp. 11093-11097, 2011.
[23] A. K. Geim and I. V. Grigorieva, "Van der Waals heterostructures," Nature, vol. 499, pp. 419-425, 2013.
[24] H. Terrones, F. Lopez-Urias, and M. Terrones, "Novel hetero-layered materials with tunable direct band gaps by sandwiching different metal disulfides and diselenides," Scientific Reports, vol. 3, pp. 1-7, 2013.
[25] 陳昶笑,李連忠, "二維異質材料:合成及應用=2D material heterostructures: synthesis and applications," 國家實驗研究院國家奈米元件實驗室, vol. 21, pp. 15-22, 2014.
[26] M. H. Chiu, C. D. Zhang, H. W. Shiu, C. P. Chuu, C. H. Chen, C. Y. S. Chang, et al., "Determination of band alignment in the single-layer MoS2/WSe2 heterojunction," Nature Communications, vol. 6, pp. 1-6, 2015.
[27] J. Zhang, J. H. Wang, P. Chen, Y. Sun, S. Wu, Z. Y. Jia, et al., "Observation of strong interlayer coupling in MoS2/WS2 heterostructures," Advanced Materials, vol. 28, pp. 1950-1956, 2016.
[28] Y. J. Gong, S. D. Lei, G. L. Ye, B. Li, Y. M. He, K. Keyshar, et al., "Two-step growth of two-dimensional WSe2/MoSe2 heterostructures," Nano Letters, vol. 15, pp. 6135-6141, 2015.
[29] J. M. Woods, Y. Jung, Y. J. Xie, W. Liu, Y. H. Liu, H. H. Wang, et al., "One-step synthesis of MoS2/WS2 layered heterostructures and catalytic activity of defective transition metal dichalcogenide films," Acs Nano, vol. 10, pp. 2004-2009, 2016.
[30] C. R. Wu, X. R. Chang, C. H. Wu, and S. Y. Lin, "The growth mechanism of transition metal dichalcogenides by using sulfurization of pre-deposited transition metals and the 2D crystal hetero-structure establishment," Scientific Reports, vol. 7, pp. 1-8, 2017.
[31] R. Dong and I. Kuljanishvili, "Review Article: Progress in fabrication of transition metal dichalcogenides heterostructure systems," Journal of Vacuum Science & Technology B, vol. 35, pp. 1-14, 2017.
[32] K. Chen, X. Wan, J. X. Wen, W. G. Xie, Z. W. Kang, X. L. Zeng, et al., "Electronic properties of MoS2-WS2 heterostructures synthesized with two-step lateral epitaxial strategy," Acs Nano, vol. 9, pp. 9868-9876, 2015.
[33] X. P. Hong, J. Kim, S. F. Shi, Y. Zhang, C. H. Jin, Y. H. Sun, et al., "Ultrafast charge transfer in atomically thin MoS2/WS2 heterostructures," Nature Nanotechnology, vol. 9, pp. 682-686, 2014.
[34] P. Rivera, J. R. Schaibley, A. M. Jones, J. S. Ross, S. F. Wu, G. Aivazian, et al., "Observation of long-lived interlayer excitons in monolayer MoSe2-WSe2 heterostructures," Nature Communications, vol. 6, pp. 1-6, 2015.
[35] C. H. Lee, G. H. Lee, A. M. van der Zande, W. C. Chen, Y. L. Li, M. Y. Han, et al., "Atomically thin p-n junctions with van der Waals heterointerfaces," Nature Nanotechnology, vol. 9, pp. 676-681, 2014.
[36] C. D. Zhang, M. Y. Li, J. Tersoff, Y. M. Han, Y. S. Su, L. J. Li, et al., "Strain distributions and their influence on electronic structures of WSe2-MoS2 laterally strained heterojunctions," Nature Nanotechnology, vol. 13, pp. 152-158, 2018.
[37] S. Pak, J. Lee, Y. W. Lee, A. R. Jang, S. Ahn, K. Y. Ma, et al., "Strain-mediated interlayer coupling effects on the excitonic behaviors in an epitaxially grown MoS2/WS2 van der Waals heterobilayer," Nano Letters, vol. 17, pp. 5634-5640, 2017.
[38] F. Wang, J. Y. Wang, S. Guo, J. Z. Zhang, Z. G. Hu, and J. H. Chu, "Tuning coupling behavior of stacked heterostructures based on MoS2, WS2, and WSe2," Scientific Reports, vol. 7, pp. 1-10, 2017.
[39] X. Y. Su, W. W. Ju, R. Z. Zhang, C. F. Guo, J. M. Zheng, Y. L. Yong, et al., "Bandgap engineering of MoS2/MX2 (MX2 = WS2, MoSe2 and WSe2) heterobilayers subjected to biaxial strain and normal compressive strain," Rsc Advances, vol. 6, pp. 18319-18325, 2016.
[40] M. Born and R. Oppenheimer, "Quantum theory of molecules," Annalen Der Physik, vol. 84, pp. 0457-0484, 1927.
[41] V. Fock, "Approximation method for the solution of the quantum mechanical multibody problems," Zeitschrift Fur Physik, vol. 61, pp. 126-148, 1930.
[42] J. C. Slater, "Note on Hartree's method," Physical Review, vol. 35, pp. 0210-0211, 1930.
[43] P. Hohenberg and W. Kohn, "Inhomogeneous electron gas " Physical Review B, vol. 136, pp. B864-B871, 1964.
[44] W. Kohn and L. J. Sham, "Self-Consistent equations including exchange and correlation effects," Physical Review, vol. 140, pp. 1133-1138, 1965.
[45] M. C. Payne, M. P. Teter, D. C. Allan, T. A. Arias, and J. D. Joannopoulos, "Iterative minimization techniques for abinitio total-energy calculations-molecular-dynamics and conjugate gradients " Reviews of Modern Physics, vol. 64, pp. 1045-1097, 1992.
[46] J. Taylor, H. Guo, and J. Wang, "Ab initio modeling of quantum transport properties of molecular electronic devices," Physical Review B, vol. 63, pp. 1-13, 2001.
[47] J. M. Soler, E. Artacho, J. D. Gale, A. Garcia, J. Junquera, P. Ordejon, et al., "The SIESTA method for ab initio order-N materials simulation," Journal of Physics-Condensed Matter, vol. 14, pp. 2745-2779, 2002.
[48] J. W. Jiang, "Graphene versus MoS2: A short review," Frontiers of Physics, vol. 10, pp. 287-302, 2015.
[49] K. H. Liu, L. M. Zhang, T. Cao, C. H. Jin, D. A. Qiu, Q. Zhou, et al., "Evolution of interlayer coupling in twisted molybdenum disulfide bilayers," Nature Communications, vol. 5, pp. 1-6, 2014.
[50] Y. J. Gong, J. H. Lin, X. L. Wang, G. Shi, S. D. Lei, Z. Lin, et al., "Vertical and in-plane heterostructures from WS2/MoS2 monolayers," Nature Materials, vol. 13, pp. 1135-1142, 2014.
[51] L. Zhang, L. H. Wan, Y. J. Yu, B. Wang, F. M. Xu, Y. D. Wei, et al., "Modulation of electronic structure of armchair MoS2 Nanoribbon," Journal of Physical Chemistry C, vol. 119, pp. 22164-22171, 2015.
[52] R. Wang, X. Y. Zhou, X. Y. Xu, J. G. Hu, and J. Pan, "The indirect-direct band gap tuning in armchair MoS2 nanoribbon by edge passivation," Journal of Physics D-Applied Physics, vol. 50, pp. 1-7, 2017.