簡易檢索 / 詳目顯示

研究生: 陳惟暄
Chen, Wei-Hsuan
論文名稱: 建立新型可由電腦程式控制的氣膠生成與呼吸暴露系統暴露於大鼠的呼吸毒理研究
Development of a Computerized Nose-only Inhalation Chamber for Nanotoxicology Study
指導教授: 張志欽
Chang, Chih-Ching
共同指導教授: 林明彥
Lin, Ming-Yeng
學位類別: 碩士
Master
系所名稱: 醫學院 - 環境醫學研究所
Department of Environmental and Occupational Health
論文出版年: 2019
畢業學年度: 107
語文別: 中文
論文頁數: 55
中文關鍵詞: 呼吸暴露奈米微粒毒理研究
外文關鍵詞: inhalation exposure, nanoparticles, toxicology studies
相關次數: 點閱:66下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 流行病學研究發現空氣污染對於造成心肺不良效應有相關性,空氣污染中的超細懸浮微粒對於誘導不良健康效應可能扮演關鍵的角色,因為奈米微粒與粗顆粒在粒徑的差異,暴露相同重量之後,奈米微粒的數目與表面積相對大於粗顆粒,但目前對於超細奈米微粒的毒理機制仍有進一步釐清的必要,因此實驗目的是建立電腦程式控制奈米微粒的呼吸暴露系統以進行奈米毒理研究。暴露系統以霧化奈米碳黑懸浮液的方式產生含有奈米碳黑微粒的氣膠,氣膠與乾淨空氣進行稀釋後,透過電腦程式監控與回饋調整數目濃度,最後校正濕度,輸送至呼吸暴露艙。以15、30與60萬(顆 / 立方公分)進行呼吸暴露系統的建立及測試,利用掃描式電移動度粒徑篩分器(SMPS)分析氣膠的粒徑分佈,測試三小時的穩定性。接著以最高濃度(600,000 顆 / 立方公分)進行動物實驗的暴露,動物實驗以Wistar大鼠共進行13週(6小時/天,5天/週)的暴露,暴露結束後一天進行犧牲,採集大鼠的肺沖提液分析白血球數量與LDH 濃度。在三種數目濃度中,總數目濃度為15萬(顆 / 立方公分)的濃度,粒徑小於100奈米的奈米碳黑氣膠佔全部的約78 %,總數目濃度60 萬(顆 / 立方公分)的濃度,電移動粒徑小於100奈米的奈米碳黑氣膠佔全部的約72 %,暴露13週的大鼠其白血球以巨噬細胞為主,其數目及所佔白血球比例與控制組相比無顯著差異,LDH分析則可以看到暴露組與控制組相比有顯著增加。此系統設置可產生三種不同濃度且分佈接近的氣膠,並穩定維持6小時,期間各參數皆符合動物實驗規範,目前的呼吸暴露系統能夠提供奈米毒理研究更貼近真實情況之暴露方法,能夠對於準確瞭解奈米毒理機制有進一步發展。

    The purpose of this study was to develop a computerized inhalation chamber for nanotoxicology study. Our system could generate a feasible number concentration at 1.5x105, 3x105, 6x105 (#/cm3). A computer program maintained the concentration through a feedback control route and the concentration with a CV% of less than 5% in number concentration during experiments. The electrical mobility diameter less than 100 nm in 1.5x105 and 6x105 (#/cm3) were 80% and 73% respectively. Rats were randomly divided into four groups according to the air quality and the type of diet . After exposed to 6x105 (#/cm3) for 13 weeks (6 hours/day, 5 days/week) then sacrificed. Macrophage was the dominant cell type in BAL fluid. Total cell counts and differential counts were no difference between four groups but LDH activity in nanoCB group was significantly higher than filtered air group. This system is able to generate nanoparticles suited for nanotoxicology studies.

    中文摘要 I Abstract II 致謝 V 目錄 VI 圖目錄 VIII 表目錄 IX 序論 1 1.1 前言 1 第二章 文獻探討 3 2.1 超細懸浮微粒之不良健康效應 3 2.2 空氣中超細懸浮微粒之來源 5 2.3 工作場所中的超細懸浮微粒 7 2.4 暴露超細懸浮微粒之體外實驗 9 2.6 以口咽吸入方法暴露超細懸浮微粒之動物實驗結果 13 2.7 以呼吸系統暴露超細懸浮微粒之動物實驗結果 18 第三章 材料與方法 28 3.1 實驗材料 28 3.1.1 超細奈米微粒 28 3.1.2 製備超細碳黑微粒之懸浮液 28 3.2 實驗呼吸暴露系統 28 3.2.1 氣膠生成 28 3.2.2 濃度回饋控制 29 3.2.3 鼻腔呼吸暴露艙 29 3.2.4 量測儀器 30 3.3 實驗動物 32 3.4 實驗方法 33 3.4.1 暴露實驗規劃 33 3.4.2 樣本採集與分析 33 3.4.3 統計分析 35 第四章 結果 36 4.1 呼吸暴露系統建立 36 4.1.1 三種數目濃度之粒徑分佈 36 4.1.2 三種數目濃度3小時之濃度控制 39 4.2 呼吸暴露系統之動物實驗結果 40 4.2.1 暴露實驗時溫度、濕度、氧氣濃度、二氧化碳濃度結果 40 4.2.2 動物實驗6小時的流量與數目濃度穩定性 41 4.2.3 暴露組與控制組去血後的肺組織 42 4.2.4 暴露組與控制組之白血球分類計數 43 4.2.5 暴露組與控制組之細胞毒性分析 44 第五章 討論 45 第六章 結論 50 第七章 參考文獻 51

    1. 吳義林、簡智祥(2006)。夏季南部次微米微粒之逐時濃度變化以及粒徑分佈,空氣污染控制技術研討會 。
    2. Bai L, Weichenthal S, Kwong JC, Burnett RT, Hatzopoulou M, Jerrett M, et al. 2018. Associations of long-term exposure to ultrafine particles and nitrogen dioxide with increased incidence of congestive heart failure and acute myocardial infarction. American journal of epidemiology 188:151-159.
    3. Becker S, Soukup JM, Gilmour MI, Devlin RB. 1996. Stimulation of human and rat alveolar macrophages by urban air particulates: Effects on oxidant radical generation and cytokine production. Toxicology and applied pharmacology 141:637-648.
    4. Bekker C, Kuijpers E, Brouwer DH, Vermeulen R, Fransman W. 2015. Occupational exposure to nano-objects and their agglomerates and aggregates across various life cycle stages; a broad-scale exposure study. Annals of Occupational Hygiene 59:681-704.
    5. Belade E, Armand L, Martinon L, Kheuang L, Fleury-Feith J, Baeza-Squiban A, et al. 2012. A comparative transmission electron microscopy study of titanium dioxide and carbon black nanoparticles uptake in human lung epithelial and fibroblast cell lines. Toxicology in Vitro 26:57-66.
    6. Brauer M, Avila-Casado C, Fortoul TI, Vedal S, Stevens B, Churg A. 2001. Air pollution and retained particles in the lung. Environmental Health Perspectives 109:1039-1043.
    7. Carter JM, Corson N, Driscoll KE, Elder A, Finkelstein JN, Harkema JN, et al. 2006. A comparative dose-related response of several key pro-and antiinflammatory mediators in the lungs of rats, mice, and hamsters after subchronic inhalation of carbon black. Journal of occupational and environmental medicine 48:1265-1278.
    8. Chang C-C, Chiu H-F, Wu Y-S, Li Y-C, Tsai M-L, Shen C-K, et al. 2005. The induction of vascular endothelial growth factor by ultrafine carbon black contributes to the increase of alveolar-capillary permeability. Environmental health perspectives 113:454-460.
    9. Dick CA, Brown DM, Donaldson K, Stone V. 2003. The role of free radicals in the toxic and inflammatory effects of four different ultrafine particle types. Inhalation toxicology 15:39-52.
    10. Driscoll KE, Carter JM, Howard BW, Hassenbein DG, Pepelko W, Baggs RB, et al. 1996. Pulmonary inflammatory, chemokine, and mutagenic responses in rats after subchronic inhalation of carbon black. Toxicology and applied pharmacology 136:372-380.
    11. Hagen DE, Alofs DJ. 1983. Linear inversion method to obtain aerosol size distributions from measurements with a differential mobility analyzer. Aerosol Science and Technology 2:465-475.
    12. Heinrich U, Fuhst R, Rittinghausen S, Creutzenberg O, Bellmann B, Koch W, et al. 1995. Chronic inhalation exposure of wistar rats and two different strains of mice to diesel engine exhaust, carbon black, and titanium dioxide. Inhalation Toxicology 7:533-556.
    13. Hofman J, Staelens J, Cordell R, Stroobants C, Zikova N, Hama S, et al. 2016. Ultrafine particles in four european urban environments: Results from a new continuous long-term monitoring network. Atmospheric environment 136:68-81.
    14. Kasai T, Gotoh K, Nishizawa T, Sasaki T, Katagiri T, Umeda Y, et al. 2014. Development of a new multi-walled carbon nanotube (mwcnt) aerosol generation and exposure system and confirmation of suitability for conducting a single-exposure inhalation study of mwcnt in rats. Nanotoxicology 8:169-178.
    15. Kim JK, Shin JH, Lee JS, Hwang JH, Lee JH, Baek JE, et al. 2016. 28-day inhalation toxicity of graphene nanoplatelets in sprague-dawley rats. Nanotoxicology 10:891-901.
    16. Knaapen AM, Borm PJ, Albrecht C, Schins RP. 2004. Inhaled particles and lung cancer. Part a: Mechanisms. International Journal of Cancer 109:799-809.
    17. Kobayashi N, Naya M, Endoh S, Maru J, Yamamoto K, Nakanishi J. 2009. Comparative pulmonary toxicity study of nano-tio2 particles of different sizes and agglomerations in rats: Different short-and long-term post-instillation results. Toxicology 264:110-118.
    18. Lanzinger S, Schneider A, Breitner S, Stafoggia M, Erzen I, Dostal M, et al. 2016. Associations between ultrafine and fine particles and mortality in five central european cities—results from the ufireg study. Environment international 88:44-52.
    19. Li XY, Brown D, Smith S, MacNee W, Donaldson K. 1999. Short-term inflammatory responses following intratracheal instillation of fine and ultrafine carbon black in rats. Inhalation toxicology 11:709-731.
    20. Ma-Hock L, Treumann S, Strauss V, Brill S, Luizi F, Mertler M, et al. 2009. Inhalation toxicity of multiwall carbon nanotubes in rats exposed for 3 months. Toxicological Sciences 112:468-481.
    21. Maynard AD, Baron PA, Foley M, Shvedova AA, Kisin ER, Castranova V. 2004. Exposure to carbon nanotube material: Aerosol release during the handling of unrefined single-walled carbon nanotube material. Journal of Toxicology and Environmental Health, Part A 67:87-107.
    22. Maynard AD, Aitken RJ. 2007. Assessing exposure to airborne nanomaterials: Current abilities and future requirements. Nanotoxicology 1:26-41.
    23. Morishita A, Masaki T, Yoshiji H, Nakai S, Ogi T, Miyauchi Y, et al. 2004. Reduced expression of cell cycle regulator p18ink4c in human hepatocellular carcinoma. Inhalation toxicology 40:677-686.
    24. Morrow P. 1988. Possible mechanisms to explain dust overloading of the lungs. Toxicological Sciences 10:369-384.
    25. Nemery B, Hoet PH, Nemmar A. 2001. The meuse valley fog of 1930: An air pollution disaster. The lancet 357:704-708.
    26. Noël A, Cloutier Y, Wilkinson KJ, Dion C, Hallé S, Maghni K, et al. 2013. Generating nano-aerosols from tio2 (5 nm) nanoparticles showing different agglomeration states. Application to toxicological studies. Journal of occupational and environmental hygiene 10:86-96.
    27. O’Neill MS, Veves A, Zanobetti A, Sarnat JA, Gold DR, Economides PA, et al. 2005. Diabetes enhances vulnerability to particulate air pollution–associated impairment in vascular reactivity and endothelial function. Circulation 111:2913-2920.
    28. Oberdörster G, Ferin J, Morrow P. 1992. Volumetric loading of alveolar macrophages (am): A possible basis for diminished am-mediated particle clearance. Experimental lung research 18:87-104.
    29. Oberdörster G, Ferin J, Gelein R, Soderholm SC, Finkelstein J. 1992. Role of the alveolar macrophage in lung injury: Studies with ultrafine particles. Environmental health perspectives 97:193-199.
    30. Oberdörster G, Ferin J, Lehnert BE. 1994. Correlation between particle size, in vivo particle persistence, and lung injury. Environmental health perspectives 102:173-179.
    31. Oberdörster G, Celein RM, Ferin J, Weiss B. 1995. Association of particulate air pollution and acute mortality: Involvement of ultrafine particles? Inhalation toxicology 7:111-124.
    32. Ostro B, Hu J, Goldberg D, Reynolds P, Hertz A, Bernstein L, et al. 2015. Associations of mortality with long-term exposures to fine and ultrafine particles, species and sources: Results from the california teachers study cohort. Environmental health perspectives 123:549-556.
    33. Oyabu T, Morimoto Y, Izumi H, Yoshiura Y, Tomonaga T, Lee B-W, et al. 2016. Comparison between whole-body inhalation and nose-only inhalation on the deposition and health effects of nanoparticles. Environmental health and preventive medicine 21:42-48.
    34. Particles. HRPoU. 2013. Understanding the health effects of ambient ultrafine particles. Hei perspectives 3.Health Effects Institute Boston, MA.
    35. Posner LN, Pandis SN. 2015. Sources of ultrafine particles in the eastern united states. Atmospheric Environment 111:103-112.
    36. Pujalté I, Serventi A, Noël A, Dieme D, Haddad S, Bouchard M. 2017. Characterization of aerosols of titanium dioxide nanoparticles following three generation methods using an optimized aerosolization system designed for experimental inhalation studies. Toxics 5:14.
    37. Renwick L, Donaldson K, Clouter A. 2001. Impairment of alveolar macrophage phagocytosis by ultrafine particles. Toxicology and applied pharmacology 172:119-127.
    38. Renwick L, Brown D, Clouter A, Donaldson K. 2004. Increased inflammation and altered macrophage chemotactic responses caused by two ultrafine particle types. Occupational and Environmental Medicine 61:442-447.
    39. Schreiber N, Ströbele M, Kopf J, Hochscheid R, Kotte E, Weber P, et al. 2013. Lung alterations following single or multiple low-dose carbon black nanoparticle aspirations in mice. Journal of Toxicology and Environmental Health, Part A 76:1317-1332.
    40. Shvedova AA, Kisin E, Murray AR, Johnson VJ, Gorelik O, Arepalli S, et al. 2008. Inhalation vs. Aspiration of single-walled carbon nanotubes in c57bl/6 mice: Inflammation, fibrosis, oxidative stress, and mutagenesis. American Journal of Physiology-Lung Cellular and Molecular Physiology 295:L552-L565.
    41. Sioutas C. 1999. Evaluation of the measurement performance of the scanning mobility particle sizer and aerodynamic particle sizer. Aerosol Science & Technology 30:84-92.
    42. Stewart JC, Chalupa DC, Devlin RB, Frasier LM, Huang L-S, Little EL, et al. 2010. Vascular effects of ultrafine particles in persons with type 2 diabetes. Environmental health perspectives 118:1692-1698.
    43. Tsai S-J, Hofmann M, Hallock M, Ada E, Kong J, Ellenbecker M. 2009. Characterization and evaluation of nanoparticle release during the synthesis of single-walled and multiwalled carbon nanotubes by chemical vapor deposition. Environmental science & technology 43:6017-6023.
    44. Wallace LA, Wheeler AJ, Kearney J, Van Ryswyk K, You H, Kulka RH, et al. 2011. Validation of continuous particle monitors for personal, indoor, and outdoor exposures. Journal of Exposure Science and Environmental Epidemiology 21:49.
    45. Xiang S, Hu Z, Zhai W, Wen D, Noll KE. 2018. Concentration of ultrafine particles near roadways in an urban area in chicago, illinois. Aerosol and Air Quality Research 18:895-903.

    無法下載圖示 校內:2024-08-01公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE