簡易檢索 / 詳目顯示

研究生: 李政哲
Li, Cheng-Che
論文名稱: 以隱藏馬可夫模式與自迴歸移動平均模式序率模擬臺灣地區之月流量系列
Stochastic simulation of monthly streamflow series using the hidden Markov model and the autoregressive moving average model in Taiwan
指導教授: 蕭政宗
Shiau, Jenq-Tzong
學位類別: 碩士
Master
系所名稱: 工學院 - 水利及海洋工程學系
Department of Hydraulic & Ocean Engineering
論文出版年: 2022
畢業學年度: 110
語文別: 中文
論文頁數: 78
中文關鍵詞: 隱藏馬可夫模式自迴歸移動平均模式序率模擬月流量
外文關鍵詞: hidden Markov model, autoregressive moving average model, stochastic simulation, monthly streamflow
相關次數: 點閱:84下載:8
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 受到全球氣候變遷的影響,臺灣河川流量因時間與空間分布不平均的情況將越加惡化,同時社會發展整體需水量增加,使得臺灣地區水資源管理系統受到嚴峻的挑戰。本研究目的為利用隱藏馬可夫模式及自迴歸移動平均模式建立流量序率模擬模式,本研究選取臺灣地區北、中、南、東部區域共七個流量站,先以對數轉換與Box-Cox轉換使月流量資料接近常態分布,建立七個流量站的隱藏馬可夫模式及自迴歸移動平均模式,以繁衍與實測資料等長之繁衍流量50組。結果顯示隱藏馬可夫模式能良好的辨識流量之型態,並以百分誤差(%difference)分析各繁衍分位流量與實測流量之誤差,研究顯示各站第10至第90分位間流量百分誤差幾乎都小於10%誤差內,兩個模式在小於第10分位數及大於第90分位數流量普遍呈現高估的現象。最後以相對平均絕對誤差(RMAD)判定,以對數轉換後隱藏馬可夫模式為最佳,隱藏馬可夫模式搭配Box-Cox轉換與自迴歸移動平均模式搭配對數轉換次之,Box-Cox轉換搭配自迴歸移動平均模式模擬結果較差。

    Spatio-temporal uneven distributed streamflow would be deteriorated due to impact of climate change. Meanwhile, rapid economic development leads to increasing water demand in Taiwan. Efficient water use in Taiwan is a challenge task. The purpose of this paper is using the hidden Markov model (HMM) and the autoregressive moving average (ARMA) model for streamflow stochastic simulation. This study selects seven streamflow gauge stations in the northern, central, southern and eastern regions of Taiwan. The monthly streamflow is log-transformed and Box-Cox-transformed first to improve data symmetry. The models generate 50 sequences with the same length of the recorded streamflow data. The results indicate that the HMM efficiently recognizes the patterns of monthly streamflow in Taiwan. The differences between the synthetic sequences and the corresponding recorded data are evaluated in terms of percentage difference. The HMM and ARMA model can reproduce the streamflow series which are close to the recorded data with less than 10% difference when streamflow are within 10th and 90th percentiles. When streamflow less than 10th and greater than 90th percentiles, the generated data are generally overestimating. Using the relative mean absolute difference (RMAD) to evaluate the model performance, the log-HMM is the best model, BC-HMM and log-ARMA rank second, and BC-ARMA has the worse performance.

    摘要 .............................................................................................................................I Extended Abstract.......................................................................................................II 誌謝 ..........................................................................................................................IX 目錄 ........................................................................................................................... X 表目錄 ................................................................................................................... XIII 圖目錄 ...................................................................................................................XIV 第一章 緒論.......................................................................................................... 1 1.1 研究動機 .............................................................................................. 1 1.2 研究目的 .............................................................................................. 2 1.3 相關文獻回顧...................................................................................... 3 1.3.1 序率模式....................................................................................... 3 1.3.2 自迴歸移動平均模式相關文獻.................................................. 3 1.3.3 隱藏馬可夫模式相關文獻.......................................................... 4 1.4 論文架構 .............................................................................................. 7 第二章 研究方法.................................................................................................. 8 2.1 隱藏馬可夫模式.................................................................................. 8 2.1.1 模式特性....................................................................................... 8 2.1.2 參數估計..................................................................................... 10 2.1.3 前向後向演算法......................................................................... 12 2.1.4 最佳狀態序列............................................................................. 13 2.1.5 序率模擬..................................................................................... 13 2.2 自迴歸移動平均模式........................................................................ 14 2.2.1 模式特性..................................................................................... 14 2.2.2 序率模擬..................................................................................... 16 2.3 模式選取準則.................................................................................... 16 2.4 資料處理 ............................................................................................ 17 2.4.1 資料轉換..................................................................................... 17 2.4.2 去季節化..................................................................................... 18 第三章 研究地區與資料.................................................................................... 19 3.1 研究區域概述.................................................................................... 19 3.2 流量測站概述.................................................................................... 22 第四章 結果與討論............................................................................................ 25 4.1 資料轉換 ............................................................................................ 25 4.2 隱藏馬可夫模式................................................................................ 25 4.2.1 各測站狀態數............................................................................. 25 4.2.2 各測站隱藏馬可夫模式之隱藏狀態變化................................ 26 4.2.3 隱藏狀態發生機率..................................................................... 28 4.3 自迴歸移動平均模式........................................................................ 34 4.3.1 各測站(p, q)階數........................................................................ 34 4.4 序率模式繁衍之結果比較................................................................ 34 4.4.1 模擬流量系列之機率密度圖.................................................... 34 4.4.2 模擬流量系列之基本統計量.................................................... 35 4.4.3 誤差指標..................................................................................... 37 4.4.4 序率模擬之誤差指標比較........................................................ 37 4.4.5 模式比較..................................................................................... 43 第五章 結論與建議............................................................................................ 44 5.1 結論 .................................................................................................... 44 5.2 建議 .................................................................................................... 45 參考文獻.................................................................................................................. 46 附錄A 各測站隱藏馬可夫模式AIC及BIC值隨狀態數變化圖...................... 52 附錄B 各測站流量系列對應之隱藏馬可夫模式隱藏狀態系列........................ 56 附錄C 各測站隱藏馬可夫模式隱藏狀態對應流量之盒狀圖............................ 60 附錄D 各測站隱藏馬可夫模式之推估參數........................................................ 64 附錄E 各測站自迴歸移動平均模式之推估階數及參數..................................... 66 附錄F 各測站隱藏馬可夫模式繁衍流量與實際流量機率密度函數圖............. 67 附錄G各測站自迴歸移動平均模式繁衍流量與實際流量機率密度函數圖..... 71 附錄H 各測站模擬流量系列基本統計量盒狀圖................................................ 75

    1.Abudu, S., Cui, C.-l., King, J. P., Abudukadeer, K. (2010). Comparison of performance of statistical models in forecasting monthly streamflow of Kizil River, China. Water Science and Engineering, 3(3), 269-281.
    2.Akaike, H. (1974). A new look at the statistical model identification. IEEE transactions on automatic control, 19(6), 716-723.
    3.Akintug, B., Rasmussen, P. (2005). A Markov switching model for annual hydrologic time series. Water Resources Research, 41(9).
    4.Alizamir, M., Kisi, O., Zounemat-Kermani, M. (2018). Modelling long-term groundwater fluctuations by extreme learning machine using hydro-climatic data. Hydrological Sciences Journal, 63(1), 63-73.
    5.Baum, L. E. (1972). An inequality and associated maximization technique in statistical estimation for probabilistic functions of Markov processes. Inequalities, 3(1), 1-8.
    6.Baum, L. E., Petrie, T., Soules, G., Weiss, N. (1970). A maximization technique occurring in the statistical analysis of probabilistic functions of Markov chains. The annals of mathematical statistics, 41(1), 164-171.
    7.Box, G. E., Cox, D. R. (1964). An analysis of transformations. Journal of the Royal Statistical Society: Series B (Methodological), 26(2), 211-243.
    8.Box, G. E., Jenkins, G. M. (1976). Time series analysis. Forecasting and control. Holden-Day Series in Time Series Analysis.
    9.Bracken, C., Rajagopalan, B., Zagona, E. (2014). A hidden Markov model combined with climate indices for multidecadal streamflow simulation. Water Resources Research, 50(10), 7836-7846.
    10.Celeux, G., Durand, J.-B. (2008). Selecting hidden Markov model state number with cross-validated likelihood. Computational Statistics, 23(4), 541-564.
    11.Dempster, A. P., Laird, N. M., Rubin, D. B. (1977). Maximum likelihood from incomplete data via the EM algorithm. Journal of the Royal Statistical Society: Series B (Methodological), 39(1), 1-22.
    12.Do, C. B., Batzoglou, S. (2008). What is the expectation maximization algorithm? Nature Biotechnology, 26(8), 897-899.
    13.Erkyihun, S. T., Rajagopalan, B., Zagona, E., Lall, U., Nowak, K. (2016). Wavelet‐based time series bootstrap model for multidecadal streamflow simulation using climate indicators. Water Resources Research, 52(5), 4061-4077.
    14.Greene, A. M., Robertson, A. W., Kirshner, S. (2008). Analysis of Indian monsoon daily rainfall on subseasonal to multidecadal time‐scales using a hidden Markov model. Quarterly Journal of the Royal Meteorological Society, 134(633), 875-887.
    15.Hassan, M. R., Nath, B. (2005). Stock market forecasting using hidden Markov model: a new approach. Paper presented at the 5th International Conference on Intelligent Systems Design and Applications (ISDA'05).
    16.Jackson, B. B. (1975). Markov mixture models for drought lengths. Water Resources Research, 11(1), 64-74.
    17.Jenkins, D. P., Patidar, S., Simpson, S. A. (2014). Synthesising electrical demand profiles for UK dwellings. Energy and Buildings, 76, 605-614.
    18.Khadr, M. (2016). Forecasting of meteorological drought using Hidden Markov Model (case study: The upper Blue Nile river basin, Ethiopia)。Ain Shams Engineering Journal, 7(1), 47-56。
    19.Koutsoyiannis, D. (2002). The Hurst phenomenon and fractional Gaussian noise made easy. Hydrological Sciences Journal, 47(4), 573-595.
    20.Kwon, H. H., Lall, U., Khalil, A. F. (2007). Stochastic simulation model for nonstationary time series using an autoregressive wavelet decomposition: Applications to rainfall and temperature. Water Resources Research, 43(5), W05407.
    21.Legg, S. (2021). IPCC, 2021: Climate Change 2021-the Physical Science basis. Interaction, 49(4), 44-45.
    22.Liu, Y.-Y., Li, S., Li, F., Song, L., Rehg, J. M. (2015). Efficient learning of continuous-time hidden markov models for disease progression. Advances in Neural Information Processing Systems, 28, 3600-3608.
    23.Melesse, A., Ahmad, S., McClain, M., Wang, X., Lim, Y. (2011). Suspended sediment load prediction of river systems: An artificial neural network approach. Agricultural Water Management, 98(5), 855-866.
    24.Mondal, M. S., Chowdhury, J. U. (2013). Generation of 10-day flow of the Brahmaputra River using a time series model. Hydrology Research, 44(6), 1071-1083.
    25.Mondal, M. S., Wasimi, S. A. (2006). Generating and forecasting monthly flows of the Ganges river with PAR model. Journal of Hydrology, 323(1-4), 41-56.
    26.Mujumdar, P., Kumar, D. N. (1990). Stochastic models of streamflow: Some case studies. Hydrological Sciences Journal, 35(4), 395-410.
    27.Patidar, S., Tanner, E., Soundharajan, B.-S., SenGupta, B. (2021). Associating climatic trends with stochastic modelling of flow sequences. Geosciences, 11(6), 255.
    28.Pender, D., Patidar, S., Pender, G., Haynes, H. (2016). Stochastic simulation of daily streamflow sequences using a hidden Markov model. Hydrology Research, 47(1), 75-88.
    29.Porto, V. C., de Souza Filho, F. d. A., Carvalho, T. M. N., de Carvalho Studart, T. M., Portela, M. M. (2021). A GLM copula approach for multisite annual streamflow generation. Journal of Hydrology, 598, 126226.
    30.Pouliasis, G., Torres-Alves, G. A., Morales-Napoles, O. (2021). Stochastic modeling of hydroclimatic processes using vine copulas. Water, 13(16), 2156.
    31.Prairie, J., Nowak, K., Rajagopalan, B., Lall, U., Fulp, T. (2008). A stochastic nonparametric approach for streamflow generation combining observational and paleoreconstructed data. Water Resources Research, 44(6).
    32.Rabiner, L. R. (1989). A tutorial on hidden Markov models and selected applications in speech recognition. Proceedings of the IEEE, 77(2), 257-286.
    33.Robertson, A. W., Kirshner, S., Smyth, P. (2004). Downscaling of daily rainfall occurrence over northeast Brazil using a hidden Markov model. Journal of Climate, 17(22), 4407-4424.
    34.Roth, N., Küderle, A., Ullrich, M., Gladow, T., Marxreiter, F., Klucken, J., Eskofier, B. M., Kluge, F. (2021). Hidden Markov Model based stride segmentation on unsupervised free-living gait data in Parkinson’s disease patients. Journal of Neuroengineering and Rehabilitation, 18(1), 1-15.
    35.Salas, J. D., Abdelmohsen, M. W. (1993). Initialization for generating single‐site and multisite low‐order periodic autoregressive and moving average processes. Water Resources Research, 29(6), 1771-1776.
    36.Schwarz, G. (1978). Estimating the dimension of a model. The Annals of Statistics, 6(2), 461-464.
    37.Singh, U., Sharma, P. K. (2021). Drought forecasting using the stochastic model in the Betwa river basin, India. Modeling Earth Systems and Environment, 1-16.
    38.Stoner, O., Economou, T. (2020). An advanced hidden Markov model for hourly rainfall time series. Computational Statistics & Data Analysis, 152, 107045.
    39.Thyer, M., Kuczera, G. (2000). Modeling long‐term persistence in hydroclimatic time series using a hidden state Markov Model. Water Resources Research, 36(11), 3301-3310.
    40.Valipour, M., Banihabib, M. E., Behbahani, S. M. R. (2013). Comparison of the ARMA, ARIMA, and the autoregressive artificial neural network models in forecasting the monthly inflow of Dez dam reservoir. Journal of Hydrology, 476, 433-441.
    41.Visser, I. (2011). Seven things to remember about hidden Markov models: A tutorial on Markovian models for time series. Journal of Mathematical Psychology, 55(6), 403-415.
    42.Vogel, R. M., Tsai, Y., Limbrunner, J. F. (1998). The regional persistence and variability of annual streamflow in the United States. Water Resources Research, 34(12), 3445-3459.
    43.Zazo, S., Molina, J.-L., Ruiz-Ortiz, V., Vélez-Nicolás, M., García-López, S. (2020). Modeling river runoff temporal behavior through a hybrid causal–hydrological (HCH) method. Water, 12(11), 3137.
    44.Zhao, Q., Cai, X. (2020). Deriving representative reservoir operation rules using a hidden Markov-decision tree model. Advances in Water Resources, 146, 103753.
    45.Zucchini, W., Guttorp, P. (1991). A hidden Markov model for space‐time precipitation. Water Resources Research, 27(8), 1917-1923.
    46.Zucchini, W., MacDonald, I. L. (2009). Hidden Markov models for time series: An introduction using R: Chapman and Hall/CRC.
    47.國家災害防救科技中心,IPCC氣候變遷第六次評估報告之科學重點摘錄與臺灣氣候變遷評析更新報告,2021
    48.經濟部水利署,中華民國109年水利統計,2020

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE