| 研究生: |
郭亭余 Kuo, Ting-Yu |
|---|---|
| 論文名稱: |
以氧化石墨烯螢光共振能量轉移(FRET)適體傳感器檢測汞二價離子 Graphene Oxide Fluorescence Resonance Energy Transfer(FRET)Aptasensor for Mercury(II)Ion Detection |
| 指導教授: |
楊瑞珍
Yang, Ruey-Jen |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 工程科學系 Department of Engineering Science |
| 論文出版年: | 2018 |
| 畢業學年度: | 106 |
| 語文別: | 中文 |
| 論文頁數: | 57 |
| 中文關鍵詞: | 氧化石墨烯 、螢光能量共振轉移 、適體傳感器 |
| 外文關鍵詞: | Graphene Oxide, FRET, Aptasensor |
| 相關次數: | 點閱:84 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
現在的重金屬汙染問題越來越嚴重,尤其是汞這類重金屬,會和有機物反應,形成有毒的化合物,加上食物鏈中的生物累積,造成人類和其他生物的危害,世界上著名的案例為1956年日本水俁市發生的水俁病,也就是所謂汞中毒,而現在常用的檢測方法有原子吸收光譜(Atomic Absorption Spectroscopy, AAS)、原子放射光譜法(Atomic Emission Spectroscopy, AES)、感應耦合電漿質譜法(Inductively Coupled Plasma Mass Spectroscopy, ICP-MS)等方法,這些方法需要昂貴的儀器、專業人員操作、成本高。
本研究是要提供一個方便操作和低成本且無須昂貴儀器的方式檢測汞離子的濃度。適體(Aptamer)是我所使用的材料之一,目前常被用來做為疾病檢測,可因鹼基對不同的排列,而對特定目標物有物理性吸附的動作,這樣的原理亦可以用在重金屬的檢測上。在研究中,氧化石墨烯和適體複合物被作為選擇性檢測汞離子(Hg2+)的螢光檢測平台,螢光能量藉由適體和氧化石墨烯之間的螢光能量共振轉移(FRET)被關閉。當Hg2+離子存在時,由於胸腺嘧啶–Hg2+–胸腺嘧啶(T–Hg2+–T)複合物的形成,使得Hg2+離子被捕獲在髮夾構型的適體之間,進而恢復螢光。研究表明氧化石墨烯適體傳感器對在大範圍0.5 μM〜20 μM的Hg2+離子濃度內具有良好的線性響應(R2 = 0.9812)且擁有良好的選擇性。
Recent attention on the problem of heavy metal pollution harmful to human health is attracting many investigations. In particular, heavy metals such as mercury reacting with organic compounds to form toxic compounds, and bioaccumulation in the food chain are seriously harmful to humans and other organisms. Commonly used detection methods including Atomic Absorption Spectroscopy (AAS), Atomic Emission Spectroscopy (AES), and Inductive Coupled Plasma Mass Spectroscopy (ICP-MS), which require expensive instruments, professional operations, and high costs. The purpose of this study is to provide a simpler, lower cost and convenient way to detecting mercury ion(Hg2+)concentrations without expensive instruments.
In this study, graphene oxide and aptamer complexes were used as identification probes for fluorescence detection platform for selective detection of mercury ions (Hg2+), and fluorescence turn off by fluorescence energy resonance transfer (FRET) between aptamer and graphene oxide. When Hg2+ ions are present, that been trapped between hairpin-shaped aptamer due to the thymine–Hg2+–thymine (T–Hg2+–T)complex , which further activates fluorescence. As show in study that the graphene oxide based aptasensor has a linear response(R2=0.9812)and good selectivity over the wide range of Hg2+ ion concentrations from 0.5 μM to 20μM.
[1]Duruibe, J.O., Ogwuegbu, M.O.C., and Egwurugwu, J.N., Heavy metal pollution and human biotoxic effects. International Journal of Physical Sciences, 2007. 2(5): p. 112-118.
[2]U.N.E.P., Global Mercury Assessment 2013: Sources, Emissions, Releases and Environmental Transport 2013.
[3]Ha, E., Basu, N., Bose-O'Reilly, S., Dorea, J.G., McSorley, E., Sakamoto, M., and Chan, H.M., Current progress on understanding the impact of mercury on human health. Environmental Research, 2017. 152: p. 419-433.
[4]U.N.E.P., The Global Atmospheric Mercury Assessment: Sources, Emissions and Transport. 2008.
[5]林達偉, 鹿林山大氣汞分布與乾濕沉降特徵及來源推估. 2014.
[6]Seinfeld, J.H. and Pandis, S.N., Atmospheric Chemistry and Physics: From Air Pollution to Climate Change, 3rd Edition. 2016.
[7]Yin, R., Feng, X., Li, X., Yu, B., and Du, B., Trends and advances in mercury stable isotopes as a geochemical tracer. Trends in Environmental Analytical Chemistry, 2014. 2: p. 1-10.
[8]Logar, M., Horvat, M., Falnoga, I., and Stibilj, V., A methodological study of mercury speciation using Dogfish liver CRM (DOLT-2). Fresenius' Journal of Analytical Chemistry, 2000. 366(5): p. 453-460.
[9]台灣衛生福利部, 水產動物類衛生標準. 2013.
[10]EPA, National Primary Drinking Water Regulations. 2009.
[11]EU, European and National Drinking Water Quality Standards. 2011.
[12]行政院環境保護署, 飲用水水質標準. 2017.
[13]Park, J.D. and Zheng, W., Human exposure and health effects of inorganic and elemental mercury. Journal of Preventive Medicine and Public Health, 2012. 45(6): p. 344-352.
[14]Clarkson, T.W., Magos, L., and Myers, G.J., The Toxicology of Mercury — Current Exposures and Clinical Manifestations. New England Journal of Medicine, 2003. 349(18): p. 1731-1737.
[15]Clarkson, T.W. and Magos, L., The toxicology of mercury and its chemical compounds. Critical Reviews in Toxicology, 2006. 36(8): p. 609-662.
[16]Lim, H.E., Shim, J.J., Lee, S.Y., Lee, S.H., Jo, J.Y., In, K.H., Kim, H.G., Yoo, S.H., and Kang, K.H., Mercury inhalation poisoning and acute lung injury The Korean Journal of Internal Medicine, 1998. 13(2): p. 127-130.
[17]Friberg, L. and Mottet, N.K., Accumulation of methylmercury and inorganic mercury in the brain. 1989.
[18]行政院衛生署, 人體血液中汞濃度. 2009.
[19]Kim, B.M., Choi, A.L., Ha, E.H., Pedersen, L., Nielsen, F., Weihe, P., Hong, Y.C., Budtz-Jorgensen, E., and Grandjean, P., Effect of hemoglobin adjustment on the precision of mercury concentrations in maternal and cord blood. Environmental Research, 2014. 132: p. 407-412.
[20]Marsh, D.O., Clarkson, T.W., Cox, C., Myers, G.J., Amin-Zaki, L., and Al-Tikriti, S., Fetal methylmercury poisoning: Relationship between concentration in single strands of maternal hair and child effects. Archives of Neurology, 1987. 44(10): p. 1017-1022.
[21]Andreoli, V. and Sprovieri, F., Genetic Aspects of Susceptibility to Mercury Toxicity: An Overview. International Journal of Environmental Research and Public Health, 2017. 14(1).
[22]Kitamura, S., Miyata, C., Tomita, M., Ueda, K., Misumi, H., Kojima, T., Minamoto, H., Kurimoto, S., Noguchi, Y., and Nakagawa, R., Epidemiological investigation of the unknown central nervous disorder in the Minamata district. Kumamoto Medical Journal, 1957. 31(1): p. 1-9.
[23]Farina, M., Rocha, J.B., and Aschner, M., Mechanisms of methylmercury-induced neurotoxicity: evidence from experimental studies. Life Sciences, 2011. 89(15-16): p. 555-563.
[24]C.T.R.T., 甲基汞汙染環境造成水俣病之過程. 2018.
[25]U.N.E.P., Minamata convention on mercury. . 2013.
[26]Novoselov, K.S., Geim, A.K., Morozov, S.V., Jiang, D., Zhang, Y., Dubonos, S.V., Grigorieva, I.V., and Firsov, A.A., Electric field effect in atomically thin carbon films. Science, 2004. 306(5696): p. 666-669.
[27]N.U.S, Grapgene and Graphite. 2016.
[28]Cai, W., Zhu, Y., Li, X., Piner, R.D., and Ruoff, R.S., Large area few-layer graphene/graphite films as transparent thin conducting electrodes. Applied Physics Letters, 2009. 95(12).
[29]Balandin, A.A., Ghosh, S., Bao, W., Calizo, I., Teweldebrhan, D., Miao, F., and Lau, C.N., Superior Thermal Conductivity of Single-Layer Graphene. Nano Letters, 2008. 8(3): p. 902-907.
[30]Geim, A.K. and Novoselov, K.S., The rise of graphene. Nature Materials, 2007. 6: p. 183.
[31]Brodie, B.C., On the Atomic Weight of Graphite. Philosophical Transactions of the Royal Society of London, 1859. 149: p. 249-259.
[32]Staudenmaier, L., Verfahren zur darstellung der graphitsäure. European Journal of Inorganic Chemistry, 1899. 32(2): p. 1394-1399.
[33]Hummers Jr, W.S. and Offeman, R.E., Preparation of graphitic oxide. Journal of the American Chemical Society, 1958. 80(6): p. 1339-1339.
[34]Brodie, B.C., XIII. On the atomic weight of graphite. Philosophical Transactions of the Royal Society of London, 1859. 149: p. 249-259.
[35]Gao, W., The Chemistry of Graphene Oxide, in Graphene Oxide: Reduction Recipes, Spectroscopy, and Applications, W. Gao, Editor. 2015, Springer International Publishing: Cham. p. 61-95.
[36]Kim, J., Cote, L.J., Kim, F., Yuan, W., Shull, K.R., and Huang, J., Graphene Oxide Sheets at Interfaces. Journal of the American Chemical Society, 2010. 132(23): p. 8180-8186.
[37]Aslam, M., Kalyar, M.A., and Raza, Z.A., Synthesis and structural characterization of separate graphene oxide and reduced graphene oxide nanosheets. Materials Research Express, 2016. 3(10).
[38]Wang, Y., Li, Z., Wang, J., Li, J., and Lin, Y., Graphene and graphene oxide: biofunctionalization and applications in biotechnology. Trends in Biotechnology, 2011. 29(5): p. 205-212.
[39]Shampo, M.A., Kyle, R.A., and Steensma, D.P., Sidney Altman-Nobel laureate for work with RNA. Mayo Clinic Proceedings, 2012. 87(10): p. e73.
[40]Tuerk, C. and Gold, L., Systematic evolution of ligands by exponential enrichment: RNA ligands to bacteriophage T4 DNA polymerase. Science, 1990. 249(4968): p. 505-510.
[41]NLM. PubMed. 2018; Available from: https://www.ncbi.nlm.nih.gov/pubmed/?term=APTAMER.
[42]Biotechnology, D.C.f., 適體與抗體特性比較. 2017, Development Center for Biotechnology.
[43]Förster, T., Zwischenmolekulare Energiewanderung und Fluoreszenz. Annalen der Physik, 2006. 437(1‐2): p. 55-75.
[44]Niehaus, J., Introduction to FRET. 2017.
[45]Kuscu, M. and Akan, O.B., Coverage and throughput analysis for FRET-based mobile molecular sensor/actor nanonetworks. Nano Communication Networks, 2014. 5(1-2): p. 45-53.
[46]Piston, D.W. and Kremers, G.-J., Fluorescent protein FRET: the good, the bad and the ugly. Trends in Biochemical Sciences, 2007. 32(9): p. 407-414.
[47]Wikipedia, Fluorescence Resonance Energy Transfer. 2018.
[48]黃仲楷, 生物傳感器. 2016.
[49]Koh, A., Kang, D., Xue, Y., Lee, S., Pielak, R.M., Kim, J., Hwang, T., Min, S., Banks, A., and Bastien, P., A soft, wearable microfluidic device for the capture, storage, and colorimetric sensing of sweat. SCIENCE TRANSLATIONAL MEDICINE, 2016. 8(366): p. 366ra165-366ra165.
[50]Liu, C.-W., Chang, H.-C., and Yang, R.-J., Aptamer-Based Sensor for Quantitative Detection of Mercury (II) Ions by Attenuated Total Reflection Surface Enhanced Infrared Absorption Spectroscopy. Analytica Chimica Acta, 2018.
[51]Wang, Y., Li, Z., Hu, D., Lin, C.-T., Li, J., and Lin, Y., Aptamer/Graphene Oxide Nanocomplex for in Situ Molecular Probing in Living Cells. Journal of the American Chemical Society, 2010. 132(27): p. 9274-9276.
[52]Lu, C.H., Yang, H.H., Zhu, C.L., Chen, X., and Chen, G.N., A Graphene Platform for Sensing Biomolecules. Angewandte Chemie International Edition, 2009. 48(26): p. 4785-4787.
[53]Zhu, Y., Cai, Y., Xu, L., Zheng, L., Wang, L., Qi, B., and Xu, C., Building an aptamer/graphene oxide FRET biosensor for one-step detection of bisphenol A. ACS Applied Materials & Interfaces, 2015. 7(14): p. 7492-7496.
[54]Xu, X., Wang, J., Jiao, K., and Yang, X., Colorimetric detection of mercury ion (Hg2+) based on DNA oligonucleotides and unmodified gold nanoparticles sensing system with a tunable detection range. Biosensors and Bioelectronics, 2009. 24(10): p. 3153-3158.
[55]Li, M., Zhou, X., Guo, S., and Wu, N., Detection of lead (II) with a "turn-on" fluorescent biosensor based on energy transfer from CdSe/ZnS quantum dots to graphene oxide. Biosensors and Bioelectronics, 2013. 43: p. 69-74.
[56]Tan, D., He, Y., Xing, X., Zhao, Y., Tang, H., and Pang, D., Aptamer functionalized gold nanoparticles based fluorescent probe for the detection of mercury (II) ion in aqueous solution. Talanta, 2013. 113: p. 26-30.
[57]Wikipedia. π–π stacking. 2018; Available from: https://en.wikipedia.org/wiki/Stacking_(chemistry).
[58]Wu, M., Kempaiah, R., Huang, P.J., Maheshwari, V., and Liu, J., Adsorption and desorption of DNA on graphene oxide studied by fluorescently labeled oligonucleotides. Langmuir, 2011. 27(6): p. 2731-2738.
[59]Ortmann, F., Schmidt, W.G., and Bechstedt, F., Attracted by Long-Range Electron Correlation: Adenine on Graphite. Physical Review Letters, 2005. 95(18): p. 186101.
[60]Paul, T., Bera, S.C., Agnihotri, N., and Mishra, P.P., Single-Molecule FRET Studies of the Hybridization Mechanism during Noncovalent Adsorption and Desorption of DNA on Graphene Oxide. The Journal of Physical Chemistry B, 2016. 120(45): p. 11628-11636.
[61]Huang, P.J.J., Kempaiah, R., and Liu, J., Synergistic pH effect for reversible shuttling aptamer-based biosensors between graphene oxide and target molecules. Journal of Materials Chemistry, 2011. 21: p. 8991-8993.
[62]Li, M., Zhou, X., Ding, W., Guo, S., and Wu, N., Fluorescent aptamer-functionalized graphene oxide biosensor for label-free detection of mercury(II). Biosensors and Bioelectronics, 2013. 41: p. 889-893.
[63]Ono, A. and Togashi, H., Highly selective oligonucleotide-based sensor for mercury(II) in aqueous solutions. Angewandte Chemie International Edition, 2004. 43(33): p. 4300-4302.
[64]Freeman, R., Finder, T., and Willner, I., Multiplexed analysis of Hg2+ and Ag+ ions by nucleic acid functionalized CdSe/ZnS quantum dots and their use for logic gate operations. Angewandte Chemie International Edition, 2009. 48(42): p. 7818-7821.
[65]Bao, C., Song, L., Xing, W., Yuan, B., Wilkie, C.A., Huang, J., Guo, Y., and Hu, Y., Preparation of graphene by pressurized oxidation and multiplex reduction and its polymer nanocomposites by masterbatch-based melt blending. Journal of Materials Chemistry, 2012. 22: p. 6088-6096.
[66]蘇州碳豐石墨烯科技有限公司, GO. 2018.
[67]Li, T., Dong, S., and Wang, E., A Lead(II)-Driven DNA Molecular Device for Turn-On Fluorescence Detection of Lead(II) Ion with High Selectivity and Sensitivity. Journal of the American Chemical Society, 2010. 132(38): p. 13156-13157.
[68]Li, J., Wang, H., Guo, Z., Wang, Y., Ma, H., Ren, X., Du, B., and Wei, Q., A "turn-off" fluorescent biosensor for the detection of mercury (II) based on graphite carbon nitride. Talanta, 2017. 162: p. 46-51.
校內:2021-12-31公開