簡易檢索 / 詳目顯示

研究生: 余沛涵
YU, Pei-Han
論文名稱: 超高性能混凝土於耐震補強詳細評估之輔助分析程式
Development of computer programs for detailed evaluation of seismic retrofits using ultra-high performance concrete
指導教授: 洪崇展
Hung, Chung-Chan
共同指導教授: 李宏仁
Lee, Hung-Jen
學位類別: 碩士
Master
系所名稱: 工學院 - 土木工程學系
Department of Civil Engineering
論文出版年: 2022
畢業學年度: 110
語文別: 中文
論文頁數: 175
中文關鍵詞: 超高性能混凝土耐震補強非線性塑鉸容量曲線
外文關鍵詞: UHPC, Seismic retrofits, nonlinear plastic hinge, capacity curve
相關次數: 點閱:136下載:26
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 鋼筋混凝土造為台灣最主要的建築形態,因位處環太平洋地震帶上,建築物經常遭受大規模地震之挑戰。在921大地震時,中部地區之校舍嚴重受損甚至倒塌,因此,從2009年起執行全國中小學校舍耐震評估與補強整建計畫,其補強成效也在歷年強震後獲得實際驗證。在2016年的高雄美濃地震與2018年的花蓮地震中,儘管校舍不再倒塌,但住商混合大樓等私有建築物倒塌的悲劇依舊重演,因此,行政院於2017年核定「安家固園計畫」,為了使私有建築補強工程易於推動,建議可先採取階段性補強提供短期緊急性之處理措施,並祭出最高補助款可達總補強費用85%之政策,但民眾接受意願仍普遍不高。推動不易的主因除了經費自籌外,補強範圍常牽涉私有空間、施工期間安置問題、補強方法須捨棄原有空間或採光等問題。因此,國內許多研究團隊投入新式補強工法之研究與試驗,為方便執業技師進行超高性能纖維混凝土(UHPC)補強工法之設計與分析,本研究擬開發一套UHPC補強構件之側力位移曲線模型,並以MATLAB開發一套UHPC耐震補強詳細評估之輔助分析程式,自動計算非線性塑鉸,並將其自動匯入使用者所輸入之ETABS模型中,使ETABS之側推分析獲得UHPC補強後之結構容量曲線。

    In Taiwan, reinforced concrete is the most commonly used structural material. Because Taiwan is located in the Pacific seismic zone, large-scale earthquakes are common. The school buildings in the middle of Taiwan were severely damaged or even collapsed during the ChiChi earthquake. As a result, the National Seismic Assessment and Reinforcement Plan for elementary and secondary school buildings have been in effect since 2009. Although school buildings did not collapse in the Kaohsiung Meinong Earthquake in 2016 or the Hualien Earthquake in 2018, the tragedies of the collapse of private facilities such as residential-commercial mixed buildings continued. To facilitate the promotion of personal building retrofit projects, it is suggested that phased retrofits be implemented to provide short-term emergency measures, as well as a policy that the maximum subsidy can reach 85% of the total retrofits, but the public's willingness to accept it is still low. The main reason for the difficulty of the promotion, aside from self-financing, is that the scope of retrofits frequently involves private space, resettlement issues during construction, and the need to abandon the original space or lighting for retrofitting methods. As a result, many domestic research teams have invested in the development of new retrofitting techniques.
    This study intends to develop a set of lateral force-displacement curve models for UHPC retrofitted members to aid in the design of UHPC retrofitting methods for practicing technicians. In addition, using MATLAB, an auxiliary analysis program for a detailed evaluation of UHPC retrofits was created. It can calculate the nonlinear plastic hinge and automatically import the user-input parameters into the ETABS model, allowing the pushover analysis of ETABS to obtain the structural capacity curve after UHPC retrofits.

    摘要i 誌謝vii 目錄ix 圖目錄xi 表目錄xviii 一、緒論1 1.1背景與目的1 1.2研究方法與架構2 二、文獻回顧4 2.1ASCE41-17[7]4 2.2臺灣結構耐震評估與補強技術手冊(TEASPA V4.0) [3]6 2.2.1 雙曲率鋼筋混凝土柱側向載重位移曲線7 2.2.2 雙曲率鋼筋混凝土柱之非線性鉸設定9 2.3鋼筋混凝土建築物耐震能力評估手冊-視窗化輔助分析SERCB[9]13 2.3.1鋼筋混凝土柱非線性行為之分析14 2.4超高性能纖維混凝土19 2.5UHPC柱21 2.6RC柱之UHPC包覆補強工法23 2.7磚牆之UHPC噴漿補強工法31 2.7.1補強工法31 2.7.2實驗結果31 2.8RC構架之UHPC斜撐補強工法35 2.8.1補強工法35 2.8.2實驗結果35 2.9柱之側向強度37 2.9.1撓曲強度37 2.9.2剪力強度37 2.10柱塑鉸長度38 2.11柱之側向變形43 2.11.1撓曲變形44 2.11.2滑移變形45 2.11.3剪力變形47 三、UHPC包覆補強柱49 3.1UHPC包覆補強柱之斷面分析49 3.1.1 計算原理與假設49 3.1.2 材料應力應變模型51 3.1.3 UHPC包覆補強柱斷面分析之驗證53 3.2UHPC包覆補強柱側力位移曲線63 3.2.1 UHPC包覆補強柱之建議側力位移曲線之推導65 3.2.2 實驗結果與建議側力位移曲線之比較66 3.3UHPC包覆補強柱塑鉸程式83 3.3.1計算原理與假設83 3.3.2 程式流程84 3.3.3功能與操作程序介紹86 四、UHPC噴漿補強於磚牆94 4.1側力位移曲線94 4.2UHPC噴漿補強磚牆等值斜撐軸力非線性鉸之定義與設置99 4.3UHPC_Jacket_Colph應用於磚牆噴漿之使用說明101 五、UHPC預鑄斜撐補強102 5.1側力位移曲線102 5.2UHPC 預鑄斜撐補強等值軸力非線性鉸之設置與定義103 5.3UHPC_Jacket_Colph應用於UHPC預鑄斜撐補強之使用說明105 六、建築物補強案例分析106 6.1案例分析—台南市後甲國中106 6.1.1傳統擴柱補強112 6.1.2 UHPC包覆柱補強118 6.1.3 UHPC噴漿補強工法應用於磚牆126 6.1.4 UHPC預鑄斜撐補強135 6.1.5 綜合討論145 6.2案例分析—住商混合大樓147 6.2.1傳統擴柱補強153 6.1.2 UHPC包覆柱補強160 七、結論與建議170 7.1結論170 7.2後續研究171 參考文獻172

    1.郭家維, 超高性能纖維混凝土於 RC 柱之耐震補強效用. 成功大學土木工程學系學位論文, 2020: p. 1-239.
    2.黃丞毅, 超高性能混凝土 (UHPC) 預鑄版於 RC 柱之耐震補強. 2021.
    3.邱聰智;鍾立來;涂耀賢;賴昱志;曾建創;翁樸文;莊明介;葉勇凱;李其航;林敏郎;王佳憲;沈文成;蕭輔沛;薛強;黃世建, 臺灣結構耐震評估與補強技術手冊 (TEASPA V4.0). 2020.
    4.Elwood, K.J. and J.P. Moehle, Axial capacity model for shear-damaged columns. ACI Structural Journal, 2005. 102(4): p. 578.
    5.Elwood, K.J. and J.P. Moehle, Drift capacity of reinforced concrete columns with light transverse reinforcement. Earthquake Spectra, 2005. 21(1): p. 71-89.
    6.余沛涵, 李宏仁, and 洪崇展, 新高強度鋼筋混凝土矩形斷面彎矩曲率分析程式之開發. 中華民國第十五屆結構工程研討會暨第五屆地震工程研討會, 2020.
    7.Bech, D., J. Houston, and B. Tremayne. ASCE 41-17 steel column modeling and acceptance criteria. in Structures Congress 2017. 2017.
    8.Institute, A.C. Building Code Requirements for Structural Concrete (ACI 318-14): An ACI Standard: Commentary on Building Code Requirements for Structural Concrete (ACI 318R-14), an ACI Report. 2012. American Concrete Institute.
    9.蔡益超;宋裕祺, 建築物耐震評估法之修訂及視窗化研究. 2005.
    10.Comartin, C., R. Niewiarowski, and C. Rojahn, ATC-40 Seismic evaluation and retrofit of concrete buildings. SSC 96, 1996. 1.
    11.Council, B.S.S., FEMA 273–NEHRP Guidelines For The Seismic Rehabilitations Of Buildings. 1997, Washington: Fed. eral Emergency Management Ageney.
    12.Paulay, T. and M.N. Priestley, Seismic design of reinforced concrete and masonry buildings. Vol. 768. 1992: Wiley New York.
    13.Priestley, M.N., R. Verma, and Y. Xiao, Seismic shear strength of reinforced concrete columns. Journal of structural engineering, 1994. 120(8): p. 2310-2329.
    14.Aschheim, M. and J.P. Moehle, Shear strength and deformability of RC bridge columns subjected to inelastic cyclic displacements. Vol. 92. 1992: Earthquake Engineering Research Center, University of California.
    15.交通部, 公路橋梁耐震設計規範. Vol. 1010702134. 2018: 中華民國政府出版品.
    16.洪崇展, 顏誠皜, 戴艾珍, 溫國威, 張庭維,新世代多功能性混凝土材料-高性能纖維混凝土. 土木水利, 2017. 44(1): p. 33-51.
    17.Group, A.S.W., Ultra High Performance Fibre-Reinforced Concrete–Interim Recommendations. Report, Association Française de Génie Civil, Paris, France, 2002.
    18.Azmee, N.M. and N. Shafiq, Ultra-high performance concrete: From fundamental to applications. Case Studies in Construction Materials, 2018. 9: p. e00197.
    19.Hung, C.-C. and C.-H. Yen, Compressive behavior and strength model of reinforced UHPC short columns. Journal of Building Engineering, 2021. 35: p. 102103.
    20.Xu, Shenchun, Chengqing Wu, Experimental investigation of seismic behavior of ultra-high performance steel fiber reinforced concrete columns. Engineering Structures, 2017. 152: p. 129-148.
    21.Koo, I.-Y. and S.-G. Hong. Strengthening RC columns with ultra high performance concrete. in Proceedings of the 2016 Structures Congress (Strctures16), Jeju Island, Korea. 2016.
    22.王昱棋, 超高性能混凝土 (UHPC) 噴漿工法於含磚牆 RC 構架之耐震補強. 2021.
    23.周笙展, 超高性能混凝土 (UHPC) 預鑄斜撐於構架之耐震補強. 2021.
    24.ACI Committee 318, Building code requirements for structural concrete (ACI 318-19) and commentary. 2019, Farmington Hills, MI: American Concrete Institute. 623.
    25.Shao, Y., C.-W. Kuo, and C.-C. Hung, Seismic performance of full-scale UHPC-jacket-strengthened RC columns under high axial loads. Engineering Structures, 2021. 243: p. 112657.
    26.Park, R. and T. Paulay, Reinforced concrete structures. 1991: John Wiley & Sons.
    27.Park, R., M.N. Priestley, and W.D. Gill, Ductility of square-confined concrete columns. Journal of the structural division, 1982. 108(4): p. 929-950.
    28.Priestley, M. and R. Park, Strength and ductility of concrete bridge columns under seismic loading. Structural Journal, 1987. 84(1): p. 61-76.
    29.Bayrak, S.B.O., Plastic hinge length of reinforced concrete columns. ACI structural journal, 2008. 105(3).
    30.Berry, M.P., D.E. Lehman, and L.N. Lowes, Lumped-plasticity models for performance simulation of bridge columns. ACI Structural Journal, 2008. 105(3): p. 270.
    31.Mayes, R. and I. Friedland. Recommended LRFD Guidelines for the seismic design of highway bridges. in Third National Seismic Conference and Workshop on Bridges and Highways: Advances in Engineering and Technology for the Seismic Safety of Bridges in the New MillenniumFederal Highway Administration; Oregon, Washington State, California Departments of Transportation; Mid America Earthquake Center; Multidisciplinary Center for Earthquake Engineering Research; Pacific Earthquake Engineering Research Center; and TRB. 2002.
    32.Subramanian, N., Plastic Hinge Length of Reinforced Concrete Columns. Paper by Sungjin Bae and Oguzhan Bayrak. ACI Structural Journal, 2009. 106(2): p. 233.
    33.Moehle, J.P., Displacement-based design of RC structures subjected to earthquakes. Earthquake spectra, 1992. 8(3): p. 403-428.
    34.Sozen, M.A., Hysteresis in structural elements. Applied mechanics in earthquake engineering, 1974. 8: p. 63-98.
    35.Priestley, M., et al. Yield displacement of circular bridge columns. in Proceedings of the Fourth Caltrans Research Workshop, California Department of Transportation, Sacramento. 1996.
    36.Lehman, D.E., Seismic performance of well-confined concrete bridge columns. 1998: University of California, Berkeley.
    37.Berry, M.P. and M.O. Eberhard, Performance modeling strategies for modern reinforced concrete bridge columns. Vol. 67. 2006.
    38.Elwood, K.J. and M.O. Eberhard, Effective Stiffness of Reinforced Concrete Columns. ACI Structural Journal, 2009. 106(4): p. 476-484.
    39.Sezen, H., Seismic behavior and modeling of reinforced concrete building columns. 2002: University of California, Berkeley.
    40.Sezen, H. and E.J. Setzler, Reinforcement slip in reinforced concrete columns. Aci Structural Journal, 2008. 105(3): p. 280-289.
    41.Park, R. and T. Paulay, Reinforced Concrete Structures, John Wiley & Sons. NY, USA, 1975.
    42.To, D.V. and J.P. Moehle, Special Moment Frames with High-Strength Reinforcement--Part 1: Beams. ACI Structural Journal, 2020. 117(2).
    43.Mander, J.B., Seismic design of bridge piers. 1983.
    44.Mander, J.B., M.J.N. Priestley, and R. Park, Observed Stress‐Strain Behavior of Confined Concrete. Journal of Structural Engineering, ASCE, 1988. 114(8): p. 1827-1849.
    45.Hung, C.-C. and S. El-Tawil, Hybrid Rotating/Fixed-Crack Model for High-Performance Fiber-Reinforced Cementitious Composites. ACI Materials Journal, 2010. 107(6).
    46.邱聰智, 低矮型鋼筋混凝土住宅結構耐震快速評估法之開發與驗證. 2015.
    47.Kyriakides, M. and S.L. Billington, Cyclic response of nonductile reinforced concrete frames with unreinforced masonry infills retrofitted with engineered cementitious composites. Journal of Structural Engineering, 2014. 140(2): p. 04013046.
    48.Decanini, L.D., L. Liberatore, and F. Mollaioli, Strength and stiffness reduction factors for infilled frames with openings. Earthquake Engineering and Engineering Vibration, 2014. 13(3): p. 437-454.
    49.蕭輔沛, 鍾立來, 葉勇凱,簡文郁,沈文成,邱聰智,周德光,趙宜峰,翁樸文,楊耀昇,褚有倫,涂耀賢, 柴駿甫,黃世建, 校舍結構耐震評估與補強技術手冊第三版. 2013.

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE