簡易檢索 / 詳目顯示

研究生: 林家豪
Lin, Chia-Hao
論文名稱: 番茄SlWRKY1轉錄因子參與多種的逆境反應
SlWRKY1, a transcription factor involved in various stress responses
指導教授: 詹明才
Chan, Ming-Tsair
學位類別: 碩士
Master
系所名稱: 生物科學與科技學院 - 熱帶植物科學研究所
Institute of Tropical Plant Sciences
論文出版年: 2010
畢業學年度: 99
語文別: 中文
論文頁數: 68
中文關鍵詞: 番茄逆境青枯病
外文關鍵詞: cold, chilling, SlWRKY1, salt, stress, RNAi
相關次數: 點閱:75下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 近年反聖嬰的現象造成氣候變化劇烈,使作物的產量下降。先前實驗室已發現SlWRKY1基因在冷、鹽和青枯病 (Ralstonia solanacearum) 逆境下其表現會增加。本研究觀察到SlWRKY1在正常情況下有些微表現,特別的是SlWRKY1在蕃茄果實轉色時期 (pink stage) 的表現量最高。並且SlWRKY1也會受到鹽與chilling (0 ℃) 處理而提高表現量。SlWRKY1的胺基酸序列中含有兩個WRKY轉錄因子的保守性 (conserved) 功能區 (domain)。從演化樹分析發現SlWRKY1和屬於第一類和病害反應相關受冷誘導的AtWRKY33及 OsWRKY53最為相似,因此SlWRKY1屬於第一類的蕃茄WRKY轉錄因子。藉由細胞定位分析 (cellular localization) 發現SlWRKY1主要表現於細胞核。本研究也將35S:SlWRKY1及SlWRKY1專一性RNAi載體轉殖到蕃茄中。將野生株、SlWRKY1ox和SlWRKY RNAi 基轉蕃茄以0℃處理後發現,相對於野生株SlWRKY1 RNAi的轉殖株對低溫較具耐受性。相對於野生株SlWRKY1ox 的轉殖株則對冷較敏感。SlWRKY1可能參與番茄冷逆境下的反應。

    Recent years the counter-Saint infant's phenomenon caused the climatic change to be fierce, causes the crops the decline of production. In previous study, our lab found SlWRKY1 transcription factor, was induced by salt-, chilling-stress, and Ralstonia Solanacearum infection. SlWRKY1 was also highly activated at pink fruit stage. SlWRKY1 contained two WRKY conserve 60 amino acid regions. The result of phylogenetic tree analysis clearly indicated that SlWRKY1 was similar to Os05g27730 and AtWRKY33 which belong to group I WRKY protein. Os05g27730, named as OsWRKY53, is also a chilling-induced rice WRKY protein. Transient expression of SlWRKY1-GFP fusion protein showed that SlWRKY1 located at nucleus. We already obtained several SlWRKY1ox and RNAi tomato plants. These transgenic plants were confirmed by Southern blot analyses. The foreign SlWRKY1 transcripts were highly expressed in SlWRKY1ox plants. Expression of endogenous SlWRKY1 was repressed in SlWRKY1 RNAi plants after chilling treatment. Transgenic SlWRKY1ox plants were more sensitive to chilling-stress. Contrastively, the RNAi plants were more tolerance to chilling-stress. SlWRKY1 may involved in tomato chilling response.

    中文摘要 I 英文摘要 II 致謝 III 目錄 IV 前言 1 一、蕃茄 1 二、冷逆境 2 三、冷逆境的訊息傳遞 3 四、鹽逆境 7 五、Ralstonia Solanacearum (Bacterial wilt of solanaceous plants) 8 六、WRKY轉錄因子 9 七、SlWRKY1的發現 12 材料與方法 13 一、 植物材料 13 二、 細菌材料 13 1.Ralstonia solanacearum 的培養 13 2.農桿菌 (Agrobacteria) 培養 13 3.E.coli的培養 14 三、蕃茄逆境下各個時間點材料的收集 14 1.蕃茄的無菌播種 14 2.鹽處理 14 3.低溫處理 14 4.乾旱處理 14 5.蕃茄的Ralstonia solanacearum感染實驗 15 6逆境賀爾蒙處理 (stress hormone treatment) 15 四、SlWRKY1細胞定位 (cell localization) 分析 15 1.阿拉伯芥原生質體的分離 15 2.原生質體PEG轉型 (protoplast PEG transfection) 16 五、DNA、RNA及細胞轉型相關實驗 17 1.Trizol reagent total RNA的萃取. 17 2.LiCl total RNA的萃取 18 3.反轉錄反應 (reverse transcription, RT) 19 4.染色質DNA (genomic DNA) 的萃取 19 5.質體的萃取 21 6.勝任細胞的製備 22 7.細胞的轉型方法 (transformation) 22 8.農桿菌勝任細胞的製備 23 9.農桿菌細胞的轉型方法 24 10.限制酶反應 25 六、載體的構築及分析 25 1.1390/ SlWRKY1 質體的構築 25 2.Gateway載體的構築 26 A.pH7GWIWG2/ SlWRKY1 RNAi 質體的構築 26 B.p2GWF7/ SlWRKY1 27 C.p2FGW7/ SlWRKY1 27 七、蕃茄的基因轉殖與轉殖植物的分析 28 1.蕃茄的基因轉殖 28 2.南方墨點法 29 3.轉基因的表現分析 31 八、轉殖植物逆境處理與分析 31 1.冷處理 31 2.鹽處理 31 3. Ralstonia solanacearum處理 32 4.存活率計算 32 結果 33 一、SlWRKY1的發現 33 二、SlWRKY1的親緣演化樹分析 33 三、SlWRKY1於各個組織器官的表現 34 四、SlWRKY1會受到鹽逆境及乾旱逆境的誘導 34 五、SlWRKY1會受到低溫誘導 34 六、R. solanacearum感染蕃茄會使SlWRKY1表現增加 34 七、BTH 無法誘導SlWRKY1 RNA 的表現 35 八、SlWRKY1主要表現於細胞核 35 九、SlWRKY1ox 轉殖株的分析 35 十、SlWRKY1 RNAi 轉殖株的分析 36 十一、SlWRKY1 RNAi 轉殖番茄對0℃的低溫具有耐受性 37 討論 38 圖一、SlWRKY1 的RT-PCR電泳圖及胺基酸編碼 41 圖二、SlWRKY1與水稻和阿拉伯芥的group I WRKY基因的演化樹關係圖 42 圖三、SlWRKY1與水稻和阿拉伯芥最相近的WRKY基因的比對分析 43 圖四、SlWRKY1 在一般情況下以及逆境處理後mRNA表現情形 44 圖五、利用阿拉伯芥原生質體短暫表現SlWRKY1-GFP融合蛋白 47 圖六、持續表達SlWRKY1轉殖植物的分子生物分析 48 圖七、SlWRKY1 RNAi 轉殖植物的分子生物分析 49 圖八、SlWRKY1轉殖番茄0℃處理的耐受性試驗 51 圖九、分析SlWRKY1 RNAi轉殖株於0℃處理後RNA的表現情形 52 表一、引子表 53 參考文獻 54 附錄一、實驗藥品配方 60 附錄二、A.SlWRKY1 RNAi 轉殖株的分子生物分析。 63 附錄二、B.利用BTH測試是否誘導SlWRKY1表現。 64 附錄二、C.實驗用載體結構圖. 65 附錄三、英文縮寫表 67

    1.洪筆鋒,台灣農家要覽,財團法人豐年社,1995。
    2.余誕年,番茄遺傳學,湖南科學技術出版社,1999。
    3.FAO. 2008. FAO Land and Plant Nutrition Management Service. http://www.fao.org/ag/agl/agll/spush
    4.TGRC: tomato genetic resource center
    5.Anderson MD, Prasad TK, Martin BA, Stewart CR. (1994) Differential gene expression in chillingacclimated maize seedlings and evidence for the involvement of abscisic acid in chilling tolerance. Plant Physiol. 105: 331-339.
    6.Allen C, Prior P, Hayward AC. (2004) Bacterial wilt disease and the Ralstonia solanacearum species complex. St. Paul (Minnesota) APS Press.
    7.Arend M, Schnitzler JP, Ehlting B, Hänsch R, Lange T, Rennenberg H, Himmelbach A, Grill E, Fromm J. (2009) Expression of the Arabidopsis mutant ABI1 gene alters abscisic acid sensitivity, stomatal development, and growth morphology in gray poplars. Plant Physiol. 151: 2110-2119.
    8.Boucher CA, Van Gijsegem F, Barberis PA, Arlat M, Zischek C. (1987) Pseudomonas solanacearum genes controlling both pathogenicity on tomato and hypersensitivity on tobacco are clustered. J. Bacteriol. 169: 5626-5632.
    9.Berri S, Abbruscato P, Faivre-Rampant O, Brasileiro AC, Fumasoni I, Satoh K, Kikuchi S, Mizzi L, Morandini P, Pè ME, Piffanelli P. (2009) Characterization of WRKY co-regulatory networks in rice and Arabidopsis. BMC Plant Biol. 9: 120.
    10.Choi H, Hong J, Ha J, Kang J, Kim SY. (2000) ABFs, a family of ABA-responsive element binding factors. J. Biol. Chem. 275: 1723-1730.
    11.Chu LY, Shao HB, Li MY. (2005) Molecular mechanisms of phytochrome signal transduction in higher plants. Colloids Surf B Biointerfaces 45: 154-161.
    12.Chinnusamy V, Zhu J, Zhu JK. (2006) Gene regulation during cold acclimation in plants. Physiol. Plant 126: 52-61.
    13.Chinnusamy V, Zhu J, Zhu JK. (2007) Cold stress regulation of gene expression in plants. Trends Plant Sci. 12: 444-451.
    14.Eulgem T, Rushton PJ, Robatzek S, Somssich IE. (2000) The WRKY superfamily of plant transcription factors. Trends Plant Sci. 5: 199-206.
    15.Eulgem T and Somssich IE. (2007) Networks of WRKY transcription factors in defense signaling. Curr. Opin. Plant Biol. 10: 366-371.
    16.Francis MS, Wolf-Watz H, Forsberg A. (2002) Regulation of type III secretion systems. Curr. Opin. Microbiol. 5: 166-172.

    17.Finkelstein RR, Gampala SS, Rock CD. (2002) Abscisic acid signaling in seeds and seedlings. Plant Cell 14: 15-45.
    18.Finkelstein R, Gampala SS, Lynch TJ, Thomas TL, Rock CD. (2005) Redundant and distinct functions of the ABA response loci ABA-INSENSITIVE(ABI)5 and ABRE-BINDING FACTOR (ABF)3. Plant Mol. Biol. 59: 253-267.
    19.Francis D and Halford NG. (2006) Nutrient sensing in plant meristems. Plant Mol. Biol. 60: 981-993.
    20.Go´mez-Cadenas A, Verhey SD, Holappa LD, Shen Q, Ho T-HD, Walker-Simmons MK. (1999) An abscisic acid-induced protein kinase, PKABA1, mediates abscisic acid-suppressed gene expression in barley aleurone layers. Proc. Natl. Acad. Sci. USA. 96: 1767-1772.
    21.Galan JE and Collmer A. (1999) Type III secretion machines: Bacterial devices for protein delivery into host cells. Science 284: 1322-1328.
    22.Guo Y, Xiong L, Song C-P, Gong D, Halfter U, Zhu J-K. (2002) A calcium sensor and its interacting protein kinase are global regulators of abscisic acid signaling in Arabidopsis. Dev. Cell 3: 233-244.
    23.Hsieh TH, Lee JT, Yang PT, Chiu LH, Charng YY, Wang YC, Chan MT. (2002) Heterology expression of the Arabidopsis C-repeat/dehydration response element binding factor 1 gene confers elevated tolerance to chilling and oxidative stresses in transgenic tomato. Plant Physiol. 129: 1086-1094.
    24.Hsieh TH, Lee JT, Charng YY, Chan MT. (2002) Tomato plants ectopically expressing Arabidopsis CBF1 show enhanced resistance to water deficit stress. Plant Physiol. 130: 618-626.
    25.He SY, Nomura K, Whittam TS. (2004) Type III protein secretion mechanism in mammalian and plant pathogens. Biochim. Biophys. Acta 1694: 181-206.
    26.Halford NG. (2006) Regulation of carbon and amino acid metabolism, roles of sucrose nonfermenting-1-related protein kinase-1 and general control nonderepressible-2-related protein kinase. Advances in Plant Pathology 43: 93-142.
    27.Hu J, Barlet X, Deslandes L, Hirsch J, Feng DX, Somssich I and Marco Y. (2008). Transcriptional responses of Arabidopsis thaliana during wilt disease caused by the soil-borne phytopathogenic bacterium, Ralstonia solanacearum. PLoS ONE 3: e2589.
    28.Halford NG and Hey SJ. (2009) SNF1-related protein kinases (SnRKs) act within an intricate network that links metabolic and stress signalling in plants. Biochem. J. 419: 247-259.
    29.Ishiguro S and Nakamura K. (1994) Characterization of a cDNA encoding a novel DNA-binding protein, SPF1, that recognizes SP8 sequences in the 50 upstream regions of genes coding for sporamin. Mol. Gen. Genet. 244: 563-571.
    30.Johnson CM, Stout PR, Broyer TC, Carlton AB. (1957) Comparative chlorine requirements of different plant species. Plant Soil 8: 337-353.
    31.Jiang Y and Deyholos MK. (2009) Functional characterization of Arabidopsis NaCl-inducible WRKY25 and WRKY33 transcription factors in abiotic stresses. Plant Mol. Biol. 69: 91-105.
    32.Knight H, Zarka DG, Okamoto H, Thomashow MF, Knight MR. (2004) Abscisic acid induces CBF gene transcription and subsequent induction of cold-regulated genes via the CRT promoter element. Plant Physiol. 135: 1710-1717.
    33.Kobayashi Y, Yamamoto S, Minami H, Kagaya Y, Hattori H. (2004) Differential activation of the rice sucrose nonfermenting1-related protein kinase2 family by hyperosmotic stress and abscisic acid. Plant Cell 16: 1163-1177.
    34.Koornneef A and Pieterse CM. (2008) Cross talk in defense signaling. Plant Physiol. 146: 839-844.
    35.Llorente F, Oliveros JC, Martínez-Zapater JM, Salinas J. (2000) A freezing-sensitive mutant of Arabidopsis, frs1, is a new aba3 allele. Planta 211: 648-655.
    36.Liu J, Ishitani M, Halfter U, Kim C-S, Shu J-K. (2000) The Arabidopsis thaliana SOS2 gene encodes a protein kinase that is required for salt tolerance. Proc. Natl. Acad. Sci. U S A 97: 3730-3734.
    37.Lee BH, Lee H, Xiong L, Zhu JK. (2002) A mitochondrial complex I defect impairs coldregulated nuclear gene expression. Plant Cell 14: 1235-1251.
    38.Lee BH, Henderson DA, Zhu JK. (2005) The Arabidopsis cold-responsive transcriptome and its regulation by ICE1. Plant Cell 17: 3155-3175.
    39.Li S, Fu Q, Huang W, Yu D. (2009) Functional analysis of an Arabidopsis transcription factor WRKY25 in heat stress. Plant Cell Rep. 28: 683-693.
    40.Marlovits TC, Kubori T, Sukhan A, Thomas DR, Galán JE, Unger VM. (2004) Structural insights into the assembly of the type III secretion needle complex. Science 306: 1040-1042.
    41.Miao Y and Zentgraf U. (2007) The antagonist function of Arabidopsis WRKY53 and ESR/ESP in leaf senescence is modulated by the jasmonic acid and salicylic acid equilibrium. Plant Cell 19: 819-830.
    42.Munns R and Tester M. (2008) Mechanisms of salinity tolerance. Annu. Rev. Plant Biol. 59: 651-681.
    43.Morran S, Eini O, Pyvovarenko T, Parent B, Singh R, Ismagul A, Eliby S, Shirley N, Langridge P, Lopato S. (2010) Improvement of stress tolerance of wheat and barley by modulation of expression of DREB/CBF factors. Plant Biotechnol. J.
    44.Nayyar H, Bains T, Kumar S. (2004) Low temperature induced floral abortion in chickpea: relationship to abscisic acid and cryoprotectants in reproductive organs. Environ. Exp. Bot. 52: 219-231.
    45.Orvar BL, Sangwan V, Omann F, Dhindsa RS. (2000) Early steps in cold sensing by plant cells: the role of actin cytoskeleton and membrane fluidity. Plant J. 23: 785-794.
    46.Peng Y, Batley LE, Chen X, Dardick C, Chem M, Ruan R, Canlas P, Ronald PC. (2008) OsWRKY62 is a negative regulator of basal Xa21-mediated defense against Xanthomonas oryzae pv. oryzae in rice. Mol. Plant Micro. Int. 18:446-458.
    47.Qiu Y and Yu D. (2009) Over-expression of the stress-induced OsWRKY45 enhances disease resistance and drought tolerance in Arabidopsis. Environ. Exp. Bot. 65: 35-47.
    48.Rushton PJ, Macdonald H, Huttly AK, Lazarus CM, Hooley R. (1995) Members of a new family of DNA-binding proteins bind to a conserved cis-element in the promoters of alpha-Amy2 genes. Plant Mol. Biol. 29: 691-702.
    49.Rushton PJ, Torres JT, Parniske M, Wernert P, Hahlbrock K, Somssich IE. (1996) Interaction of elicitor-induced DNA-binding proteins with elicitor response elements in the promoters of parsley PR1 genes. EMBO J. 15: 5690-5700.
    50.Ramamoorthy R, Jiang SY, Kumar N, Venkatesh PN, Ramachandran S. (2008) A comprehensive transcriptional profiling of the WRKY gene family in rice under various abiotic and phytohormone treatments. Plant Cell Physiol. 49: 868-879.
    51.Rushton PJ, Somssich IE, Ringler P, Shen QJ. (2010) WRKY transcription factors. Trends Plant Sci. 15: 247-258.
    52.Sakai A and Larcher W. (1987) Frost Survival of Plants: Responses and Adaptation to Freezing Stress. Springer, Berlin.
    53.Stockinger EJ, Gilmour SJ, Thomashow MF. (1997) Arabidopsis thaliana CBF1 encodes an AP2 domain-containing transcription activator that binds to the C repeat/DRE, a cis-acting DNA regulatory element that stimulates transcription in response to low temperature and water deficit. Proc. Natl. Acad. Sci. U S A. 94: 1035-1040.
    54.Sangwan V, Foulds I, Singh J, Dhindsa RS. (2001) Cold-activation of Brassica napus BN115 promoter is mediated by structural changes in membranes and cytoskeleton, and requires Ca2+ influx. Plant J. 27: 1-12.
    55.Sauter A, Davies WJ, Hartung W. (2001) The long-distance abscisic acid signal in the droughted plant: the fate of the hormone on its way from root to shoot. J. Exp. Bot. 52: 1991-1997.
    56.Shao HB, Liang ZS, Shao MA. (2005) LEA proteins in higher plants: Structure, function, gene expression and regulation. Colloids Surf B Biointerfaces 45: 131-135.
    57.Shao HB, Jiang SY, Li FM, Chu LY, Zhao CX, Shao MA, Zhao XN, Li F. (2007) Some advances in plant stress physiology and their implications in the systems biology era. Colloids Surf B Biointerfaces 54: 33-36.
    58.Shao HB, Chu LY, Shao MA. (2008) Calcium as a versatile plant signal transducer under soil water stress. Bioessays 30: 634-641.
    59.Shao HB, Chu LY, Shao MA, Zhao CX. (2008) Advances in functional regulation mechanisms of plant aquaporins: their diversity, gene expression, localization, structure and roles in plant soil-water relations. Mol. Membr. Biol. 25: 179-191.
    60.Skibbe M, Qu N, Galis I, Baldwin IT. (2008) Induced plant defenses in the natural environment: Nicotiana attenuata WRKY3 and WRKY6 coordinate responses to herbivory. Plant Cell 20:1984-2000.
    61.Thomashow MF. (1999) Plant cold acclimation: freezing tolerance genes and regulatory mechanisms. Annu. Rev. Plant Physiol. Plant Mol. Biol. 50: 571-599.
    62.Toldi O, Tuba Z, Scott P. (2009) Vegetative desiccation tolerance: Is it a goldmine for bioengineering crops? Plant Sci. 176: 187-199.
    63.Uno Y, Furihara, T, Abe H, Yoshida R, Shinozaki K, Yamaguchi-Shinozaki K. (2000) Arabidopsis basic leucine zipper transcription factors involved in an abscisic acid-dependent signal transduction pathway under drought and high-salinity conditions. PNAS 97: 11632-11637.
    64.Umezawa T, Yoshida R, Maruyama K, Yamaguchi-Shinozaki K, Shinozaki K. (2004) SRK2C, a SNF1-related protein kinase 2, improves drought tolerance by controlling stress-responsive gene expression in Arabidopsis thaliana. Proc. Natl. Acad. Sci. U S A. 101: 17306-17311.
    65.Vaultier MN, Cantrel C, Vergnolle C, Justin AM, Demandre C, Benhassaine-Kesri G, Ciçek D, Zachowski A, Ruelland E. (2006) Desaturase mutants reveal that membrane rigidification acts as a cold perception mechanism upstream of the diacylglycerol kinase pathway in Arabidopsis cells. FEBS Lett. 580: 4214-4223.
    66.Wu X, Shiroto Y, Kishitani S, Ito Y, Toriyama K. (2009) Enhanced heat and drought tolerance in transgenic rice seedlings overexpressing OsWRKY11 under the control of HSP101 promoter. Plant Cell Rep. 28: 21-30.
    67.Wu FH, Shen SC, Lee LY, Lee SH, Chan MT, Lin CS. (2009) Tape-Arabidopsis Sandwich - a simpler Arabidopsis protoplast isolation method. Plant Methods 5: 16.
    68.Xing W and Rajashekar CB. (2001) Glycine betaine involvement in freezing tolerance and water stress in Arabidopsis thaliana. Environ. Exp. Bot. 46: 21-28.
    69.Xiong L, Ishitani M, Lee H, Zhu JK. (2001) The Arabidopsis LOS5/ABA3 locus encodes a molybdenum cofactor sulfurase and modulates cold stress- and osmotic stress–responsive gene expression. Plant Cell 13: 2063-2083. 
    70.Xie Z, Zhang ZL, Zou X, Huang J, Ruas P, Thompson D, Shen QJ. (2005) Annotations and functional analyses of the rice WRKY gene superfamily reveal positive and negative regulators of abscisic acid signaling in aleurone cells. Plant Physiol. 137: 176-189.
    71.Xing DH, Lai ZB, Zheng ZY, Vinod KM, Fan BF, Chen ZX. (2008) Stress and pathogen induced Arabidopsis WRKY48 is a transcriptional activator that represses plant basal defense. Mol. Plant Micro. Int. 10:1-12.
    72.Xin Z, Wang A, Yang G, Gao P, Zheng ZL. (2009) The Arabidopsis A4 subfamily of lectin receptor kinases negatively regulates abscisic acid response in seed germination. Plant Physiol. 149: 434-444.
    73.Yamaguchi-Shinozaki K and Shinozaki K. (2006) Transcriptional regulatory networks in cellular responses and tolerance to dehydration and cold stresses. Annu. Rev. Plant Biol. 57: 781-803.
    74.Yun KY, Park MR, Mohanty B, Herath V, Xu F, Mauleon R, Wijaya E, Bajic VB, Bruskiewich R, de Los Reyes BG. (2010) Transcriptional regulatory network triggered by oxidative signals configures the early response mechanisms of japonica rice to chilling stress. BMC Plant Biol. 10: 16.
    75.Zou X, Seemann JR, Neuman D, Shen QJ. (2004) A WRKY gene from creosote bush encodes an activator of the abscisic acid signaling pathway. J. Biol. Chem. 279: 55770-55779.
    76.Zheng Z, Qamar SA, Chen Z, Mengiste T. (2006) Arabidopsis WRKY33 transcription factor is required for resistance to necrotrophic fungal pathogens. Plant J. 48: 592-605.
    77.Zhou QY, Tian AG, Zou HF, Xie ZM, Lei G, Huang J, Wang CM, Wang HW, Zhang JS, Chen SY. (2008) Soybean WRKY-type transcription factor genes, GmWRKY13, GmWRKY21, and GmWRKY54, confer differential tolerance to abiotic stresses in transgenic Arabidopsis plants. Plant Biotechnol. J. 6: 486-503.
    78.Zhang Y, Andralojc PJ, Hey SJ. (2008) Arabidopsis SNF1-related protein kinase-1 and calcium-dependent protein kinase phosphorylate conserved target sites in ABA response element binding proteins. Annals of Applied Biology. 153: 401-409.

    無法下載圖示 校內:2016-02-09公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE