簡易檢索 / 詳目顯示

研究生: 邱昱翔
Chiu, Yu-Hsiang
論文名稱: 以電混凝技術處理水中氟硼酸、硼酸與氟離子
Removal of fluoroborate, boric acid and fluoride by electrocoagulation process
指導教授: 黃耀輝
Huang, Yao-Hui
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2020
畢業學年度: 108
語文別: 中文
論文頁數: 98
中文關鍵詞: 電混凝技術四氟硼酸硼酸動力學
外文關鍵詞: electrocoagulation, tetrafluoroborate, boric acid, fluoride, kinetic
相關次數: 點閱:104下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 現代工業中,硼矽酸鹽玻璃蝕刻、電鍍製程及煙道氣脫硫工廠所排放廢水中含有氟硼酸鹽、硼與氟等的汙染物,硼與氟可分別用熟知的COP與加鈣混凝法來去除,然而四氟硼酸於水中相當穩定,因此造成此類廢水難以處理。本研究首先比較電混凝技術中兩種不同反應器(平板電極與管式網狀電極),以金屬鋁作為犧牲陽極使之有效地分解四氟硼酸成硼酸及氟離子,再以金屬鐵作為犧牲陽極,利用共混凝的方法將此硼酸及氟離子同時沉澱去除,使濾液能達到水質標準。平板電極反應器體積1升,其中含有四對鋁板作為陰、陽極,管式網狀電極反應器體積1.2升,其中含有4支鋁網作為陽極、 4支鈦基DSA作為陰極。研究結果發現,針對9.25 mM (800 mg-BF4-/L)的四氟化硼合成廢水,平板電極反應器可在pH為8.0、電流為2.3 A、25°C的條件將四氟硼酸降解至10 mg/L以下,降解率達99%,其濾液再進行第二階段的鐵系電混凝處理(pH為10.0、電流為2.3 A、25 °C),可使總硼與總氟濃度分別達到5 和10 mg/L以下,總硼與總氟去除率分別達到95%與98%以上,且符合放流水標準(B < 5 mg/L、F < 15 mg/L)。針對相同濃度的合成廢水,管式網狀電極反應器亦使用前述程序的操作條件,四氟化硼的濃度降至120 mg/L,分解率達到85%,其衍生之硼酸及自由氟離子濃度皆能達到5 mg/L以下。本研究再利用平板反應器針對不同氟硼比的四氟化硼合成廢水進行去除,發現當氟硼比越大時四氟化硼的分解率會呈現下降的趨勢,若將電流密度提高可以更有效地分解四氟化硼。最後,藉由實驗數據與反應式的計算,對於電混凝系統的反應機制做動力學的探討,發現硼酸的去除機制為吸附作用,而氟離子的去除機制為共混凝法,而硼酸的吸附反應為速率決定步驟之反應式。

    In modern industry, effluents from factory contain a lot of pollutants such as fluoroborate, borate and fluoride. However, boron and fluorine will react to produce fluoroborate. It is quite stable in water so that this type of wastewater is hard to be treated. The tetrafluoroborate was treated by electrocoagulation technology, using metallic aluminum as a sacrificial anode to effectively decompose tetrafluoroborate into boric acid and fluoride. The plate electrode reactor has a volume of 1 liter, which contains four pairs of aluminum plates as cathodes and anodes. The results of the study found that, for the 9.25 mM (800 mg-BF4-/L) tetrafluoroborate synthetic wastewater, BF4- can be degraded below 10 mg/L at pH 8.0, 5 mA/cm2 of current density, and 25°C. And the filtrate is subjected to the second stage of aluminum-based electrocoagulation treatment (pH 8, 5 mA/cm2 of current density, 25 °C), which can make the concentration of total boron and total fluorine is respectively below 5 and 10 mg/L. The removal efficiency of total boron and total fluorine reached 95% and 98% respectively, and met the discharge water standard (B <5 mg/L, F <15 mg/L). Furthermore, the plate reactor was used to remove tetrafluoroborate synthetic wastewater with different ratios of fluorine to boron. It was found that the decomposition rate of boron tetrafluoride will show a downward trend when the ratio of fluorine to boron is larger. Finally, based on the calculation of experimental data and reaction formulas, the kinetics of the reaction mechanism of the electrocoagulation system was discussed. It was found that the removal mechanism of boric acid was adsorption, while the removal mechanism of fluoride ions was coagulation. The adsorption reaction is the reaction formula of the rate-determining step in the system.

    目錄 第一章 緒論 1 1-1 研究源起 1 1-2 研究目的與內容 2 第二章 文獻回顧 3 2-1 自然界的硼氟 3 2-2 工業中的四氟硼酸 3 2-2-1 四氟化硼的形成與性質 4 2-2-2 四氟化硼的分解 6 2-2-3 四氟化硼的應用與汙染 9 2-2-4 硼氟的必要性與危害性 11 2-3 水質規範與標準 13 2-3-1 硼的水質規範 13 2-3-2 氟的水質規範 14 2-4 水中四氟化硼的去除方法 16 2-4-1 吸附法 16 2-4-2 電解法 16 2-4-3 共混凝沉澱法 17 2-4-4 電混凝技術 18 2-5 電混凝系統 23 2-5-1 鋁系電混凝系統之反應機制 25 2-5-2 電混凝技術的優缺點 28 2-5-3 電混凝系統的操作基本參數 30 2-5-4 電解質的添加 31 2-5-5 鐵系電混凝系統除硼酸 33 2-6 反應器設計 35 2-6-1 立式平板反應器 36 2-6-2 水平式平板反應器 37 2-6-3 多孔板反應器 37 2-6-4 固體管狀反應器 38 第三章 實驗設備、材料與方法 39 3-1 研究架構與流程 39 3-2 實驗設備 41 3-3 符號及公式定義 42 3-4 實驗藥品 43 3-5 實驗步驟 44 3-6 檢測儀器與分析方法 44 3-6-1 感應耦合電漿原子發射光譜儀,ICP 44 3-6-2 離子層析儀,IC 45 3-6-3 X光繞射分析儀,XRD 48 3-6-4 能量色散X-射線光譜, EDS 49 3-6-5 傅立葉轉換紅外線光譜,FTIR 49 第四章 結果與討論 50 4-1 平板電極反應器應用於電混凝技術 50 4-1-1 四氟化硼的降解 50 4-1-2 pH值對於鋁系電混凝技術除硼之影響 54 4-1-3 電流密度對於鋁系電混凝技術除硼之影響 55 4-1-4 鐵系電混凝技術除硼 57 4-1-5 鋁系電混凝系統與鐵系電混凝系統的比較 60 4-2 管式網狀電極反應器應用於電混凝技術 61 4-2-1 單管管式網狀電極反應器 61 4-2-2 四管管式網狀電極反應器 62 4-3 以鋁系電混凝技術去除不同氟硼比的四氟化硼 65 4-3-1 電流密度對於氟硼比系統之影響 65 4-3-2 不同氟硼比對於四氟化硼去除之影響 69 4-4 鋁系電混凝法去除四氟化硼之動力模組 71 4-4-1 鋁系電混凝法去除氟離子之動力模組 71 4-4-2 鋁系電混凝法去除硼酸之動力模組 73 4-4-3 鋁系電混凝法去除四氟化硼之動力模組 75 4-4-4 含自由氟離子之四氟化硼降解系統動力模組 77 4-5 固體分析 81 4-5-1 鋁系電混凝系統 81 4-5-2 鐵系電混凝系統 84 第五章 結論與建議 87 5-1 結論 87 5-2 建議 89 參考文獻 90   圖目錄 圖2 1 氟化硼在[B] = 9.25 mM,[F]/[B] = 4條件下的物種分布圖 5 圖2 2 在[B] = 9.26 mM,[B]/[Al]/[F] = 1/2/4條件下,不同物種的分布圖, 其中(a)以硼的比例為縱軸,(b)以氟的比例為縱軸,(c)與(d)以鋁的 比例為縱軸 7 圖2-3 總鋁的濃度以及pH值對BF4-分解的影響 8 圖2 4 全球硼化合物在各產業之使用比例 10 圖2 5 2018年我國台電系統發電量比例 10 圖2-6 2018年我國台電用水比例及污水處理流程 11 圖2-7 電混凝系統反應示意圖 23 圖2-8鋁物種的溶解曲線圖 26 圖2-9 pH值對於硼及鋁濃度的趨勢圖 27 圖2-10 電流密度的不同對於四氟化硼去除率之影響 28 圖2-11 不同電解質對於(a)四氟化硼分解 (b)總氟及總硼去除的影響。不同 濃度之NaCl對於(c)四氟化硼分解(d)總氟及總硼去除的影響。....33 圖2-12 Fe-Ni複合型電極板對數對於除硼之影響 34 圖2-13 FeCO3及Fe(OH)2之溶解度曲線 35 圖2-14 立式平板反應器 36 圖2-15 水平式平板反應器 37 圖2-16 多孔板反應器 38 圖2-17 固體管反應器 38 圖 3 1 研究流程架構圖 40 圖 3 2 電混凝系統之變因魚骨圖 40 圖 3 3 平板電極反應器示意圖 42 圖 3 4 管式網狀電極反應器示意圖 42 圖3 5 BF4-、F-於IC偵測儀之retention time (min) 48 圖4-1 四氟化硼於鋁系電混凝系統中的降解趨勢線 51 圖4-2 電混凝過程pH變化圖 51 圖4-3 氟離子於鋁系電混凝系統中的降解趨勢線 53 圖4-4氟離子於鋁系電混凝系統中的降解趨勢線 53 圖4-5 不同pH值對於除硼之影響 55 圖4-6 不同電流密度下硼的最終濃度 56 圖 4-7 不同電流密度下的電流效率 57 圖4-8 鐵系電混凝系統去除硼酸之趨勢圖 58 圖4-9 鐵系電混凝系統去除四氟化硼之趨勢圖 59 圖4-10 單管管式網狀電極反應器去除四氟化硼之趨勢圖 62 圖4-11四管管式網狀電極反應器去除四氟化硼之趨勢圖 63 圖4-12 四升四管管式網狀電極反應器降解四氟化硼之趨勢圖 64 圖4-13 氟硼比8:1系統各物種濃度之趨勢圖 66 圖4-14 氟硼比8:1之系統總氟去除趨勢圖 67 圖4-15 氟硼比8:1之系統總硼去除趨勢圖 67 圖4-16 不同電流密度對於氟硼比8:1系統降解四氟化硼之影響 68 圖4-17 不同氟硼比對於四氟化硼去除之影響 69 圖4-18 四氟化硼、硼酸及氟離子之去除曲線 70 圖4-19 以鋁系電混凝系統去除氟離子之濃度曲線及理論曲線 73 圖4-20鋁系電混凝系統吸附硼酸之濃度曲線及理論曲線 75 圖4-21 鋁系電混凝系統去除四氟化硼脂濃度曲線及理論曲線 77 圖4-22 含自由氟離子之四氟化硼降解系統濃度曲線及理論曲線 79 圖4-23 鋁系電混凝鋁汙泥之XRD圖 82 圖4-24 鋁系電混凝鋁汙泥之FTIR圖 83 圖4-25 高溫乾燥鐵汙泥XRD圖 84 圖4-26 冷凍乾燥鐵汙泥XRD圖 85 圖4-27 鐵系電混凝系統汙泥 86 表目錄 表2-1 硼與氟的相關反應式 4 表2-2 硼、氟與鋁的相關反應式 6 表2 3 各國對於硼的飲用水標準 13 表2 4 各國對於硼的放流水標準 14 表2 5 各國對於氟的飲用水標準 15 表2 6 各國對於氟的放流水標準 15 表2 7各種四氟化硼處理方法比較 20 表2 8 各種除氟方法之條件比較 21 表2 9 各式除硼方法之條件與比較 22 表3 1 兩階段反應機制 41 表4-1 鋁系電混凝系統與鐵系電混凝系統的比較 60 表4-2 鋁系電混凝鋁汙泥元素分析圖 82

    1. Schubert, D.M., Boron: Inorganic Chemistry, in Encyclopedia of Inorganic and Bioinorganic Chemistry. 2015.
    2. P. Power, P. and W. G. Woods, The chemistry of boron and its speciation in plants. Vol. 193. 1997. 1-13.
    3. Vithanage, M. and P. Bhattacharya, Fluoride in the environment: sources, distribution and defluoridation. Environmental Chemistry Letters $V 13, 2015(2): p. 131-147.
    4. R. D. Smith, "The trace element chemistry of coal during combustion and the emissions from coal-fired plants," Progress in Energy and Combustion Science, vol. 6, pp. 53-119, 1980.
    5. A. Clemens, L. Damiano, D. Gong, and T. Matheson, "Partitioning behaviour of some toxic volatile elements during stoker and fluidised bed combustion of alkaline sub-bituminous coal," Fuel, vol. 78, pp. 1379-1385, 1999.
    6. A. Clemens, J. Deely, D. Gong, T. Moore, and J. Shearer, "Partitioning behaviour of some toxic trace elements during coal combustion—the influence of events occurring during the deposition stage," Fuel, vol. 79, pp. 1781-1784, 2000
    7. Brotherton, R.J., et al., Boron Compounds, in Ullmann's Encyclopedia of Industrial Chemistry. 2012. p. 237-258.
    8. Xu, K., Nonaqueous Liquid Electrolytes for Lithium-Based Rechargeable Batteries. Chemical Reviews, 2004. 104(10): p. 4303-4418.
    9. Yasuhiro Matsumoto, W.J., et al., Electrical Double-Layer Capacitor. 2005, Honda Motor Co., Ltd., Tokyo (JP); Mitsubishi Chemical Corporation, Tokyo (JP): United States.
    10. Hem, J.D. and C.E. Roberson, Form and stability of aluminum hydroxide complexes in dilute solution, in Water Supply Paper. 1967.
    11. J. Katagiri, S. Borjigin, T. Yoshioka, and T. Mizoguchi, "Formation and decomposition of tetrafluoroborate ions in the presence of aluminum," Journal of Material Cycles and Waste Management, vol. 12, pp. 136-146, 2010.
    12. Lisbona, D.F. and K.M. Steel, Recovery of fluoride values from spent pot-lining: Precipitation of an aluminium hydroxyfluoride hydrate product. Separation and Purification Technology, 2008. 61(2): p. 182-192.
    13. Wagner, M., Analyse und Modellierung langfristiger Auswirkungen einer hochdosierten Kalkungsmaßnahme auf den Stoffaustrag im Einzugsgebiet der Steilen Bramke (Oberharz). 2007: Cuvillier.
    14. Lin, J.-Y., et al., Electrocoagulation of tetrafluoroborate (BF4−) and the derived boron and fluorine using aluminum electrodes. Water Research, 2019. 155: p. 362-371.
    15. Itakura, T., R. Sasai, and H. Itoh, A Novel Recovery Method for Treating Wastewater Containing Fluoride and Fluoroboric Acid. Vol. 79. 2006. 1303-1307.
    16. Itakura, T., R. Sasai, and H. Itoh, In Situ Solid/Liquid Separation Effect for High-Yield Recovery of Boron and Fluorine from Aqueous Media Containing Borate or Fluoroborate Ions. Vol. 80. 2007. 2014-2018.
    17. Chou, L.-J., 超薄玻璃液晶顯示器的製造方式與品質分析研究. 2008, 國立清華大學.
    18. Yli-Pentti, A., Electroplating and Electroless Plating. Vol. 4. 2014. 277-306.
    19. 20.D. Gernon, M., et al., Environmental benefits of methanesulfonic acid. Comparative properties and advantages. Vol. 1. 1999. 127-140.
    20. 台灣電力股份有限公司. https://www.taipower.com.tw.
    21. ioneer. https://www.ioneer.com/materials/boron.
    22. Gupta, U.C., et al., Boron toxicity and deficiency: a review. Canadian Journal of Soil Science, 1985. 65(3): p. 381-409.
    23. Howe, P.D., A review of boron effects in the environment. Biological trace element research, 1998. 66(1-3): p. 153-166.
    24. Nable, R.O., G.S. Bañuelos, and J.G. Paull, Boron toxicity. Plant and Soil, 1997. 193(1-2): p. 181-198.
    25. Nielsen, F.H., Boron in human and animal nutrition. Plant and Soil, 1997. 193(1-2): p. 199-208.
    26. Kabu, M. and M.S. Akosman, Biological effects of boron, in Reviews of environmental contamination and toxicology. 2013, Springer. p. 57-75.
    27. Robbins, W.A., et al., Chronic boron exposure and human semen parameters. Reproductive Toxicology, 2010. 29(2): p. 184-190.
    28. 徐慈鴻 and 李貽華, 氟汙染與植物. 行政院農業委員會農業藥物毒物試驗所技術專刊第142號.
    29. 阮國棟, 氟化物之污染特性及處理技術. 工業污染防治第29期, 1989.
    30. WHO, Guidelines for drinking-water quality. 2017.
    31. EUR-Lex.https://eur-lex.europa.eu/legal-content/EN/ALL/?uri=CELEX:31998L0083.
    32. Japan, M.o.t.E.G.o. https://www.env.go.jp/en/water/gw/gwp.html.
    33. 34.5749-2006, G., 生活饮用水卫生标准. 2007.
    34. Scientific Criteria Document for the Development of the Canadian Water Quality Guidelines for Boron. Canadian Council of Ministers of the Environment, 2009.
    35. Japan National Effluent Standards. Ministry of the Environment, Government of Japan.
    36. 中華民國行政院環境保護署, 放流水標準第二條修正草案總說明. 2017.
    37. ZDHC, Textile Industry Wastewater Discharge Quality Standards: Literature Review. 2015.
    38. 中華民國行政院環境保護署, 飲用水水質標準. 2017.
    39. Mukherjee, S., et al., Elucidation of the sorptive uptake of fluoride by Ca2+-treated and untreated algal biomass of Nostoc sp. (BTA394): Isotherm, kinetics, thermodynamics and safe disposal. Process Safety and Environmental Protection, 2017. 107: p. 334-345.
    40. 41.8978-1996, G., 污水综合排放標準. 1998.
    41. Yoshioka, T., et al., Removal of tetrafluoroborate ion from aqueous solution using magnesium–aluminum oxide produced by the thermal decomposition of a hydrotalcite-like compound. Chemosphere, 2007. 69(5): p. 832-835.
    42. Xiang, H., et al. 1-Butyl-3-methylimidazolim tetrafluoroborate removal by electrolysis treatment. in 2010 International Conference on Mechanic Automation and Control Engineering. 2010.
    43. Lishin thesis
    44. Ezechi, E.H., et al., Boron removal from produced water using electrocoagulation. Process Safety and Environmental Protection, 2014. 92(6): p. 509-514.
    45. Wolska, J. and M. Bryjak, Methods for boron removal from aqueous solutions—A review. Desalination, 2013. 310: p. 18-24.
    46. Sandoval, M.A., et al., Simultaneous removal of fluoride and arsenic from groundwater by electrocoagulation using a filter-press flow reactor with a three-cell stack. Separation and Purification Technology, 2019. 208: p. 208-216
    47. Brião, V.B., et al., Reverse osmosis for desalination of water from the Guarani Aquifer System to produce drinking water in southern Brazil. Desalination, 2014. 344: p. 402-411.
    48. Huang, H., et al., Investigation on the simultaneous removal of fluoride, ammonia nitrogen and phosphate from semiconductor wastewater using chemical precipitation. Chemical Engineering Journal, 2017. 307: p. 696-706
    49. Schoeman, J., Performance of a water defluoridation plant in a rural area in South Africa. Vol. 35. 2009.
    50. Yılmaz, A., et al., Boron removal by means of chemical precipitation with calcium hydroxide and calcium borate formation. Vol. 29. 2012. 1382-1387.
    51. Hu, J., et al., Charge-Aggregate Induced (CAI) Reverse Osmosis Membrane for Seawater Desalination and Boron Removal. Vol. 520. 2016.
    52. Alharati, A., et al., Boron removal in water using a hybrid membrane process of ion exchange resin and microfiltration without continuous resin addition. Journal of Water Process Engineering, 2017. 17: p. 32-39.
    53. Kartikaningsih, D., Y.-J. Shih, and Y.-H. Huang, Boron removal from boric acid wastewater by electrocoagulation using aluminum as sacrificial anode. Sustainable Environment Research, 2016. 26(4): p. 150-155..
    54. Lin, J.-Y., et al., Precipitation recovery of boron from aqueous solution by chemical oxo-precipitation at room temperature. Applied Energy, 2016. 164: p. 1052-1058.
    55. R. S. Sathish, S. Sairam, V. G. Raja, G. N. Rao, and C. Janardhana, "Defluoridation of water using zirconium impregnated coconut fiber carbon," Separation Science and Technology, vol. 43, pp. 3676-3694, 2008.
    56. J. N. Hakizimana, B. Gourich, M. Chafi, Y. Stiriba, C. Vial, P. Drogui, et al., "Electrocoagulation process in water treatment: A review of electrocoagulation modeling approaches," Desalination, vol. 404, pp. 1-21, 2017.
    57. M. Y. A. Mollah, R. Schennach, J. R. Parga, and D. L. Cocke, "Electrocoagulation (EC)—science and applications," Journal of hazardous materials, vol. 84, pp. 29-41, 2001.
    58. H. Liu, X. Zhao, and J. Qu, "Electrocoagulation in water treatment," in Electrochemistry for the Environment, ed: Springer, 2010, pp. 245-262.
    59. N. Marriaga-Cabrales and F. Machuca-Martínez, "Fundamentals of electrocoagulation," ed: Kerala, 2014.
    60. M. Y. Mollah, P. Morkovsky, J. A. Gomes, M. Kesmez, J. Parga, and D. L. Cocke, "Fundamentals, present and future perspectives of electrocoagulation," Journal of hazardous materials, vol. 114, pp. 199-210, 2004.
    61. E. A. Vik, D. A. Carlson, A. S. Eikum, and E. T. Gjessing, "Electrocoagulation of potable water," Water Research, vol. 18, pp. 1355-1360, 1984.
    62. H. Lounici, L. Addour, D. Belhocine, H. Grib, S. Nicolas, B. Bariou, et al., "Study of a new technique for fluoride removal from water," Desalination, vol. 114, pp. 241-251, 1997.
    63. B. Prisyazhnyuk, "Electrolytic defluorination of wastewater and natural water using alternating current," Soviet chemical industry, vol. 24, pp. 24-25, 1992.
    64. L. Ming, S. R. Yi, Z. J. Hua, B. Yuan, W. Lei, L. Ping, et al., "Elimination of excess fluoride in potable water with coacervation by electrolysis using an aluminum anode," Fluoride, vol. 20, pp. 54-63, 1987.
    65. E. Bazrafshan, K. A. Ownagh, and A. H. Mahvi, "Application of electrocoagulation process using Iron and Aluminum electrodes for fluoride removal from aqueous environment," Journal of Chemistry, vol. 9, pp. 2297-2308, 2012.
    66. D. Kartikaningsih, Y.-J. Shih, and Y.-H. Huang, "Boron removal from boric acid wastewater by electrocoagulation using aluminum as sacrificial anode," Sustainable Environment Research, vol. 26, pp. 150-155, 2016.
    67. G. Chen, "Electrochemical technologies in wastewater treatment," Separation and purification Technology, vol. 38, pp. 11-41, 2004.
    68. C. Comninellis and G. Chen, Electrochemistry for the Environment vol. 2015: Springer, 2010.
    69. A. A. Halim, A. F. A. Bakar, M. A. K. M. Hanafiah, and H. Zakaria, "Boron removal from aqueous solutions using curcumin-aided electrocoagulation," Middle-East Journal of Scientific Research, vol. 11, pp. 583-588, 2012.
    70. K. Mansouri, A. Hannachi, A. Abdel-Wahab, and N. Bensalah, "Electrochemically dissolved aluminum coagulants for the removal of natural organic matter from synthetic and real industrial wastewaters," Industrial & Engineering Chemistry Research, vol. 51, pp. 2428-2437, 2012.
    71. M. Kobya, E. Demirbas, A. Dedeli, and M. Sensoy, "Treatment of rinse water from zinc phosphate coating by batch and continuous electrocoagulation processes," Journal of Hazardous Materials, vol. 173, pp. 326-334, 2010.
    72. H. A. Moreno-Casillas, D. L. Cocke, J. A. Gomes, P. Morkovsky, J. Parga, and E. Peterson, "Electrocoagulation mechanism for COD removal," Separation and purification Technology, vol. 56, pp. 204-211, 2007.
    73. M. Schwartz, "Deposition from aqueous solutions: an overview," Handbook of Deposition Technologies for Films and Coatings—Science, Technology and Applications, p. 506, 1994. [50] S. Natarajan, "Current efficiency and electrochemical equivalent in an electrolytic process," Bulletin of Electrochemistry, vol. 1, pp. 215-216, 1985.
    74. S. Natarajan, "Current efficiency and electrochemical equivalent in an electrolytic process," Bulletin of Electrochemistry, vol. 1, pp. 215-216, 1985.
    75. N. Daneshvar, A. Oladegaragoze, and N. Djafarzadeh, "Decolorization of basic dye solutions by electrocoagulation: an investigation of the effect of operational parameters," Journal of hazardous materials, vol. 129, pp. 116-122, 2006.
    76. A. Clemens, L. Damiano, D. Gong, and T. Matheson, "Partitioning behaviour of some toxic volatile elements during stoker and fluidised bed combustion of alkaline sub-bituminous coal," Fuel, vol. 78, pp. 1379-1385, 1999.
    77. A. Golder, N. Hridaya, A. Samanta, and S. Ray, "Electrocoagulation of methylene blue and eosin yellowish using mild steel electrodes," Journal of hazardous materials, vol. 127, pp. 134-140, 2005.
    78. W.-J. Lee and S.-I. Pyun, "Effects of hydroxide ion addition on anodic dissolution of pure aluminium in chloride ion-containing solution," Electrochimica Acta, vol. 44, pp. 4041-4049, 1999.
    79. W.-L. Chou, C.-T. Wang, and K.-Y. Huang, "Effect of operating parameters on indium (III) ion removal by iron electrocoagulation and evaluation of specific energy consumption," Journal of hazardous materials, vol. 167, pp. 467-474, 2009.
    80. S.-I. Pyun, S.-M. Moon, S.-H. Ahn, and S.-S. Kim, "Effects of Cl−, NO− 3 and SO 2− 4 ions on anodic dissolution of pure aluminum in alkaline solution," Corrosion Science, vol. 41, pp. 653-667, 1999.
    81. Widhiastuti, F., Lin, J. Y., Shih, Y. J., & Huang, Y. H. (2018). Electrocoagulation of boron by electrochemically co-precipitated spinel ferrites. Chemical Engineering Journal, 350, 893-901.
    82. Mahasti, N. N., Shih, Y. J., & Huang, Y. H. (2020). Recovery of magnetite from fluidized-bed homogeneous crystallization of iron-containing solution as photocatalyst for Fenton-like degradation of RB5 azo dye under UVA irradiation. Separation and Purification Technology, 116975.
    83. Mameri, N., Yeddou, A. R., Lounici, H., Belhocine, D., Grib, H., & Bariou, B. (1998). Defluoridation of septentrional Sahara water of North Africa by electrocoagulation process using bipolar aluminium electrodes. Water research, 32(5), 1604-1612.
    84. Mollah, M. Y., Morkovsky, P., Gomes, J. A., Kesmez, M., Parga, J., & Cocke, D. L. (2004). Fundamentals, present and future perspectives of electrocoagulation. Journal of hazardous materials, 114(1-3), 199-210.
    85. Agnes Raharjo, 以鋁為犧牲電極之電混凝程序處理水中四氟硼酸.2017, 國立成功大學.
    86. IMF國際貨幣基金組織, https://stock-ai.com/grp-Mix-wwWAPS.php.
    87. Chen, M., Dollar, O., Shafer-Peltier, K., Randtke, S., Waseem, S., & Peltier, E. (2020). Boron removal by electrocoagulation: Removal mechanism, adsorption models and factors influencing removal. Water Research, 170, 115362.
    88. Sandoval, M. A., Fuentes, R., Nava, J. L., & Rodríguez, I. (2014). Fluoride removal from drinking water by electrocoagulation in a continuous filter press reactor coupled to a flocculator and clarifier. Separation and Purification Technology, 134, 163-170.

    下載圖示 校內:2025-07-31公開
    校外:2025-07-31公開
    QR CODE