簡易檢索 / 詳目顯示

研究生: 張永昇
Cheung, Wing-Sing
論文名稱: 無基板表面電漿雷射製程與特性
Fabrication and characterization of substrate-free surface plasmon laser
指導教授: 周昱薰
Chou, Yu-Hsun
學位類別: 碩士
Master
系所名稱: 理學院 - 光電科學與工程學系
Department of Photonics
論文出版年: 2022
畢業學年度: 110
語文別: 英文
論文頁數: 40
中文關鍵詞: 可轉移表面電漿子雷射氧化鋅奈米雷射
外文關鍵詞: Substrate-free surface plasmon laser, ZnO, Surface Plasmonic Polariton
相關次數: 點閱:194下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 摘要i Abstract iii 誌謝 iv Table of Contents v List of Tables vii List of Figures viii Chapter 1. Introduction 1 1.1. Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 1.2. Overview of plasmonic lasers . . . . . . . . . . . . . . . . . . . . . . . . . 2 1.3. Dissertation overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 Chapter 2. Theory 5 2.1. Light-matter interaction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 2.1.1. Absorption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 2.1.2. Spontaneous emissions . . . . . . . . . . . . . . . . . . . . . . . . 6 2.1.3. Stimulated emissions . . . . . . . . . . . . . . . . . . . . . . . . . 6 2.2. Laser theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 2.2.1. Pumping source . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 2.2.2. Cavity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 2.2.3. Gain medium . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 2.3. Surface plasmon . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 2.3.1. Drude model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 2.3.2. Surface plasmon polariton . . . . . . . . . . . . . . . . . . . . . . 11 2.3.3. Surface plasmon polariton laser . . . . . . . . . . . . . . . . . . . . 14 Chapter 3. Method 17 3.1. Sample Preparation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 3.1.1. Substrate Cleaning . . . . . . . . . . . . . . . . . . . . . . . . . . 17 3.1.2. Spin Coating Photoresist . . . . . . . . . . . . . . . . . . . . . . . 17 3.1.3. Thin film deposition . . . . . . . . . . . . . . . . . . . . . . . . . 18 3.1.4. Transfer thin film and prepares SPP laser . . . . . . . . . . . . . . 18 3.2. Analytical Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 3.2.1. Photoluminescence System . . . . . . . . . . . . . . . . . . . . . . 19 3.3. Finite Element Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 3.3.1. Solid Heat Transfer . . . . . . . . . . . . . . . . . . . . . . . . . . 22 3.4. Instrument . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 3.4.1. Photoluminescence Spectroscopy system . . . . . . . . . . . . . . . 24 3.4.2. Scanning Electron Microscope . . . . . . . . . . . . . . . . . . . . 24 3.4.3. Transmission Electron Microscope . . . . . . . . . . . . . . . . . . 24 3.4.4. E-beam evaporator . . . . . . . . . . . . . . . . . . . . . . . . . . 25 3.5. Specification of instrument and material . . . . . . . . . . . . . . . . . . . 25 Chapter 4. Data analysis and discussion 27 4.1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 4.2. Material analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 4.2.1. Simulation of a minimum thickness of metal layer . . . . . . . . . . 27 4.2.2. Thickness of thin film and structure confirm . . . . . . . . . . . . . 28 4.2.3. Compare difference transfer method’s Al film surface under microscopy 30 4.3. Optical properties of transfer to leaf . . . . . . . . . . . . . . . . . . . . . 31 4.4. Heat transfer analysis of SPP laser . . . . . . . . . . . . . . . . . . . . . . 33 4.4.1. Design simulation structure . . . . . . . . . . . . . . . . . . . . . . 33 4.4.2. Finite element method simulates two laser devices heat transfer . . . 33 4.4.3. Heat transfer experiment . . . . . . . . . . . . . . . . . . . . . . . 34 Chapter 5. Conclusion 36 5.1. Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 5.2. Future work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 References 37

    [1] A. Otto, “Excitation of nonradiative surface plasma waves in silver by the method of frustrated total reflection,” Zeitschrift für Physik A Hadrons and nuclei, vol. 216, no. 4, pp. 398–410, 1968.
    [2] R. H. Ritchie, E. Arakawa, J. Cowan, and R. Hamm, “Surface-plasmon resonance effect in grating diffraction,” Physical review letters, vol. 21, no. 22, p. 1530, 1968.
    [3] TSMC, “TSMC Annual Report 2021,”https://investor.tsmc.com/sites/ir/annualreport/2021/20212021.
    [4] G. E. Moore, “Cramming more components onto integrated circuits, reprinted from electronics, volume 38, number 8, april 19, 1965, pp.114 ff.” IEEE Solid-State Circuits Society Newsletter, vol. 11, no. 3, pp. 33–35, 2006.
    [5] D. Miller, “Rationale and challenges for optical interconnects to electronic chips,” Proceedings of the IEEE, vol. 88, no. 6, pp. 728–749, 2000.
    [6] M. Born, E. Wolf, A. B. Bhatia, P. C. Clemmow, D. Gabor, A. R. Stokes, A. M. Taylor, P. A. Wayman, and W. L. Wilcock, Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light, 7th ed. Cambridge University Press, 1999.
    [7] E. I. Galanzha, R. Weingold, D. A. Nedosekin, M. Sarimollaoglu, J. Nolan, W. Harrington, A. S. Kuchyanov, R. G. Parkhomenko, F. Watanabe, Z. Nima et al., “Spaser as a biological probe,” Nature communications, vol. 8, no. 1, pp. 1–7, 2017.
    [8] R. F. Oulton, V. J. Sorger, T. Zentgraf, R.-M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” nature, vol. 461, no. 7264, pp. 629–632, 2009.
    [9] M. Noginov, G. Zhu, A. Belgrave, R. Bakker, V. Shalaev, E. Narimanov, S. Stout, E. Herz, T. Suteewong, and U. Wiesner, “Demonstration of a spaser-based nanolaser,” Nature, vol. 460, no. 7259, pp. 1110–1112, 2009.
    [10] M. T. Hill, M. Marell, E. S. Leong, B. Smalbrugge, Y. Zhu, M. Sun, P. J. Van Veldhoven, E. J. Geluk, F. Karouta, Y.-S. Oei et al., “Lasing in metal-insulator-metal subwavelength plasmonic waveguides,” Optics express, vol. 17, no. 13, pp. 11 107–11 112, 2009.
    [11] S.-W. Chang, T.-R. Lin, and S. L. Chuang, “Theory of plasmonic fabry-perot nanolasers,” Optics Express, vol. 18, no. 14, pp. 15 039–15 053, 2010.
    [12] I. Guide, “Comsol multiphysics,” 5.6, COMSOL AB, pp. 204–8, 1998.
    [13] X. Cao, C. Jiang, D. Tan, Q. Li, S. Bi, and J. Song, “Recent mechanical processing techniques of two-dimensional layered materials: A review,” Journal of Science: Advanced Materials and Devices, vol. 6, no. 2, pp. 135–152, 2021.
    [14] A. C. Tamboli, E. D. Haberer, R. Sharma, K. H. Lee, S. Nakamura, and E. L. Hu, “Room-temperature continuous-wave lasing in gan/ingan microdisks,” Nature photonics, vol. 1, no. 1, pp. 61–64, 2007.
    [15] M. H. Huang, S. Mao, H. Feick, H. Yan, Y. Wu, H. Kind, E. Weber, R. Russo, and P. Yang, “Room-temperature ultraviolet nanowire nanolasers,” science, vol. 292, no. 5523, pp. 1897–1899, 2001.
    [16] F. Van Beijnum, P. J. Van Veldhoven, E. J. Geluk, M. J. de Dood, W. Gert, and M. P. Van Exter, “Surface plasmon lasing observed in metal hole arrays,” Physical review letters, vol. 110, no. 20, p. 206802, 2013.
    [17] M. A. Zimmler, J. Bao, F. Capasso, S. Müller, and C. Ronning, “Laser action in nanowires: Observation of the transition from amplified spontaneous emission to laser oscillation,” Applied Physics Letters, vol. 93, no. 5, p. 051101, 2008.
    [18] M. Khajavikhan, A. Simic, M. Katz, J. Lee, B. Slutsky, A. Mizrahi, V. Lomakin, and Y. Fainman, “Thresholdless nanoscale coaxial lasers,” Nature, vol. 482, no. 7384, pp. 204–207, 2012.
    [19] M. P. Nezhad, A. Simic, O. Bondarenko, B. Slutsky, A. Mizrahi, L. Feng, V. Lomakin, and Y. Fainman, “Room-temperature subwavelength metallo-dielectric lasers,” Nature Photonics, vol. 4, no. 6, pp. 395–399, 2010.
    [20] W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” nature, vol. 424, no. 6950, pp. 824–830, 2003.
    [21] R.-M. Ma, R. F. Oulton, V. J. Sorger, G. Bartal, and X. Zhang, “Room-temperature subdiffraction- limited plasmon laser by total internal reflection,” Nature materials, vol. 10, no. 2, pp. 110–113, 2011.
    [22] Y.-J. Lu, J. Kim, H.-Y. Chen, C. Wu, N. Dabidian, C. E. Sanders, C.-Y. Wang, M.-Y. Lu, B.-H. Li, X. Qiu et al., “Plasmonic nanolaser using epitaxially grown silver film,” in CLEO: Science and Innovations. Optica Publishing Group, 2012, pp. CTh5C–7.
    [23] V. Garg, B. S. Sengar, V. Awasthi, P. Sharma, C. Mukherjee, S. Kumar, S. Mukherjee et al., “Localized surface plasmon resonance on au nanoparticles: tuning and exploitation for performance enhancement in ultrathin photovoltaics,” RSC advances, vol. 6, no. 31, pp. 26 216–26 226, 2016.
    [24] A. Amirjani and D. F. Haghshenas, “Ag nanostructures as the surface plasmon resonance (spr)˗ based sensors: a mechanistic study with an emphasis on heavy metallic ions detection,” Sensors and Actuators B: Chemical, vol. 273, pp. 1768–1779, 2018.
    [25] C. Langhammer, M. Schwind, B. Kasemo, and I. Zoric, “Localized surface plasmon resonances in aluminum nanodisks,” Nano letters, vol. 8, no. 5, pp. 1461–1471, 2008.
    [26] A. Goetzberger and W. Greube, “Solar energy conversion with fluorescent collectors,” Applied physics, vol. 14, no. 2, pp. 123–139, 1977.
    [27] H. Suzuki, “Organic light-emitting materials and devices for optical communication technology,” Journal of Photochemistry and Photobiology A: Chemistry, vol. 166, no. 1-3, pp. 155–161, 2004.
    [28] B. Jacquier, E. Lebrasseur, S. Guy, A. Belarouci, and F. Menchini, “Rare earth-doped confined structures for amplifiers and lasers,” Journal of alloys and compounds, vol. 303, pp. 207–213, 2000.
    [29] Y.-H. Chou, K.-B. Hong, C.-T. Chang, T.-C. Chang, Z.-T. Huang, P.-J. Cheng, J.-H. Yang, M.-H. Lin, T.-R. Lin, K.-P. Chen et al., “Ultracompact pseudowedge plasmonic lasers and laser arrays,” Nano letters, vol. 18, no. 2, pp. 747–753, 2018.
    [30] Y.-H. Chou, Y.-M. Wu, K.-B. Hong, B.-T. Chou, J.-H. Shih, Y.-C. Chung, P.-Y. Chen, T.- R. Lin, C.-C. Lin, S.-D. Lin et al., “High-operation-temperature plasmonic nanolasers on single-crystalline aluminum,” Nano letters, vol. 16, no. 5, pp. 3179–3186, 2016.
    [31] D. K. Sharma, S. Shukla, K. K. Sharma, and V. Kumar, “A review on zno: Fundamental properties and applications,” Materials Today: Proceedings, 2020.
    [32] J. L. Bromberg, The laser in America, 1950-1970. MIT press, 1991.
    [33] A. J. Gross and T. R. Herrmann, “History of lasers,” World journal of urology, vol. 25, no. 3, pp. 217–220, 2007.
    [34] G. Chartier, Introduction to optics. Springer, 2005.
    [35] J. F. Ready, Industrial applications of lasers. Elsevier, 1997.
    [36] R. Paschotta, Field guide to lasers. SPIE press Bellingham, WA, 2008, vol. 12.
    [37] C. Fabry, “Theorie et applications d’une nouvelle methods de spectroscopie intereferentielle,” Ann. Chim. Ser. 7, vol. 16, pp. 115–144, 1899.
    [38] E. Hecht, “Optics 4th edition,” Optics 4th edition by Eugene Hecht Reading, 2001.
    [39] R. W. Wood, “Xlii. on a remarkable case of uneven distribution of light in a diffraction grating spectrum,” The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, vol. 4, no. 21, pp. 396–402, 1902.
    [40] U. Fano, “The theory of anomalous diffraction gratings and of quasi-stationary waves on metallic surfaces (sommerfeld's waves),” JOSA, vol. 31, no. 3, pp. 213–222, 1941.
    [41] D. K. Cheng et al., “Fundamentals of engineering electromagnetics,” 1993.
    [42] S. L. Chuang, Physics of photonic devices. John Wiley & Sons, 2012.
    [43] S. A. Maier et al., Plasmonics: fundamentals and applications. Springer, 2007, vol. 1.
    [44] R. F. Oulton, V. J. Sorger, D. Genov, D. Pile, and X. Zhang, “A hybrid plasmonic waveguide for subwavelength confinement and long-range propagation,” nature photonics, vol. 2, no. 8, pp. 496–500, 2008.
    [45] W. Zhou, M. Dridi, J. Y. Suh, C. H. Kim, D. T. Co, M. R. Wasielewski, G. C. Schatz, and T. W. Odom, “Lasing action in strongly coupled plasmonic nanocavity arrays,” Nature nanotechnology, vol. 8, no. 7, pp. 506–511, 2013.
    [46] J. Jackson, “Classical electrodynamics , publisher john wiley & sons inc,” New Jersey, vol. 558559, 1998.
    [47] A. H. Kitai, Solid state luminescence: Theory, materials and devices. Springer Science& Business Media, 2012.
    [48] J. I. Goldstein, D. E. Newbury, J. R. Michael, N. W. Ritchie, J. H. J. Scott, and D. C.Joy, Scanning electron microscopy and X-ray microanalysis. Springer, 2017.
    [49] M. Hayat, Basic techniques for transmission electron microscopy. Elsevier, 2012.
    [50] K. S. Harsha, Principles of vapor deposition of thin films. Elsevier, 2005.

    無法下載圖示 校內:2026-08-31公開
    校外:2026-08-31公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE