簡易檢索 / 詳目顯示

研究生: 江凱焩
Chiang, Kai-Peng
論文名稱: 幾丁聚醣/硫酸化軟骨素奈米粒子之製備及其應用
Preparation and application of chitosan/chondroitin sulfate nanoparticles
指導教授: 洪敏雄
Hon, Ming-Hsiung
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學及工程學系
Department of Materials Science and Engineering
論文出版年: 2006
畢業學年度: 94
語文別: 中文
論文頁數: 87
中文關鍵詞: 幾丁聚醣藥物釋放硫酸化軟骨素
外文關鍵詞: chitosan, chondroitin sulfate, drug release
相關次數: 點閱:85下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究以自行設計的步階微滴設備,利用陰電性幾丁聚醣(CTS)與陽電性硫酸化軟骨素(ChS)兩種聚電解質藉著彼此間的靜電庫侖力吸引形成CTS-ChS奈米複合粒子。評估其做為5-FU藥物釋放載體的可行性。傅立葉紅外線光譜分析顯示,CTS的NH3與ChS的COO及OSO3產生鍵結,證實此兩種聚電解質以靜電吸引方式形成錯合物。實驗中分別改變CTS-ChS濃度比、反應pH值以及CTS分子量以觀察其對粒徑及界面電位之影響,最後在CTS-ChS濃度比4:3、反應pH=3以及CTS分子量為80 kDa的條件下粒徑大小為145.1±30 nm的複合微粒。

    在藥物釋放的應用上,比較5-FU/CTS與ChS混合及CTS與5-FU/ChS混合兩種不同藥物包覆程序對藥物包覆率的影響,顯示後者所得之包覆率較高為42.5±1.1%;比較起始添加藥量對包覆率的影響,顯示起始添加藥量10 mg所得之包覆率最高為70.4±2.1%。此外,從不同反應pH值及不同CTS分子量的實驗發現到反應時的pH值越高或者CTS的分子量越大,所得之5-FU包覆率越高。而藥物釋放的結果則顯示,不論以600 kDa、200 kDa及80 kDa的CTS所合成的5-FU/CTS-ChS複合微粒,在藥物釋放動力學上均類似兩階段的Higuchi釋放模式,且分子量越小,5-FU的釋放率及釋放速率越大。

    In this study, chitosan(CTS) and chondroitin sulfate(ChS), two poly-electrolytes, were used to form nanoparticles through electrostatic force by a step dropwise method. These particles were evaluated their application for drug delivery of 5-fluorouacail(5-FU). According to FTIR analysis, there exists the bonding of NH3 of CTS together with COO and OSO3 of ChS in the complexes. It demonstrates that the complexes are formed by electrostatic force of these two poly-electrolytes. Then, it is observed the influence of the concentration ratio of CTS/ChS, reaction pH value and the viscosity molecular weight(Mv) of CTS on the particle size and zeta potential of CTS-ChS particles. It is found that the CTS-ChS particles with average size of 145 nm could be obtained with the concentration ratio of CTS and ChS of 4:3, reacted in pH 3 condition and the Mv of CTS being 80 kDa.

    The in-vitro release profiles of the 5-FU are established in phosphate buffer solution (PBS) pH=7.4 at 37℃. Encapsulation efficiency (EE) of drug for different mixing procedure of 5-FU/CTS with ChS or 5-FU/ChS with CTS is compared, the later shows a higher EE up to 42.5±1.1%. The influence of the amount of initial drug on the EE is shown that the highest EE up to 70.4±2.1% could be obtained for the addition of 10 mg. In addition, as the pH value or Mv of CTS increases, the EE of 5-FU would increase. The result of drug release shows that whether the Mv of CTS is 600 kDa, 200 kDa or 80 kDa, 5-FU/CTS-ChS particles follow two steps Higuchi model for the drug release kinetics. Besides, the release rate and release amount of 5-FU increase for the lower Mv of CTS.

    摘要.......................................................................I Abstract..................................................................II 總目錄...................................................................III 圖目錄...................................................................VII 表目錄.....................................................................X 第一章、緒論...............................................................1 1-1 前言...................................................................1 1-2 研究目的...............................................................3 第二章、文獻回顧...........................................................4 2-1 幾丁質與幾丁聚醣.......................................................4 2-1-1 幾丁質與幾丁聚醣的歷史沿革...........................................4 2-1-2 幾丁質與幾丁聚醣之結構...............................................4 2-1-3 幾丁質與幾丁聚醣之特性...............................................5 2-1-3.1 幾丁質於自然界的分佈...............................................5 2-1-3.2 幾丁質與幾丁聚醣之溶解特性.........................................7 2-1-3.3 幾丁聚醣之去乙醯化程度.............................................7 2-1-4 幾丁質及幾丁聚醣之製備...............................................7 2-1-4.1 幾丁質的製備.......................................................7 2-1-4.2 幾丁聚醣的製備.....................................................8 2-1-5 幾丁質與幾丁聚醣的應用...............................................9 2-2 硫酸化軟骨素..........................................................11 2-2-1硫酸化軟骨素之研究及應用.............................................11 2-3 藥物傳輸技術..........................................................13 2-4 五氟尿嘧啶(5-Fluorouracil)(5-FU)......................................15 2-4-1 5-FU之合成..........................................................15 2-4-2 載體包覆5-FU給藥之發展..............................................16 2-5 奈米藥物載體..........................................................17 2-5-1 奈米藥物載體的製備方式..............................................19 2-6 幾丁聚醣於藥物輸送之應用..............................................20 2-7 幾丁聚醣奈米粒子於藥物輸送之應用......................................21 2-8 聚電解質..............................................................23 2-8-1 聚電解質的介紹......................................................23 2-8-2 幾丁聚醣聚電解質錯合物形成原理......................................25 2-8-3 幾丁聚醣聚電解質反應機制之探討......................................27 第三章、實驗材料與方法....................................................30 3-1實驗藥品...............................................................30 3-2 實驗流程..............................................................31 3-3實驗方法...............................................................33 3-3-1製備不同分子量之幾丁聚醣.............................................33 3-3-2幾丁聚醣分子量之測定.................................................33 3-3-3 幾丁聚醣去乙醯度之測定..............................................34 3-3-4 幾丁聚醣-硫酸化軟骨素複合微粒之製備.................................35 3-3-4-1 溶劑選用..........................................................35 3-3-4-2 實驗方法..........................................................35 3-3-5 5-FU/幾丁聚醣-硫酸化軟骨素複合粒子之製備............................36 3-4 材料分析項目..........................................................37 3-4-1 粒徑及界面電位分析..................................................37 3-4-2 傅立葉轉換紅外線光譜儀(FTIR)........................................38 3-4-3 穿透式電子顯微鏡(TEM)...............................................38 3-5 5-FU/幾丁聚醣-硫酸化軟骨素複合粒子藥物釋放系統分析....................38 3-5-1 5-FU於幾丁聚醣-硫酸化軟骨素複合粒子包覆率計算.......................38 3-5-2 5-FU/幾丁聚醣-硫酸化軟骨素複合粒子之體外溶離實驗....................39 第四章、結果與討論........................................................40 4-1幾丁聚醣分子量及去乙醯度之測定.........................................40 4-2幾丁聚醣-硫酸化軟骨素奈米複合粒子之製備................................44 4-2-1 幾丁聚醣-硫酸化軟骨素奈米複合粒子之組成分子結構分析.................44 4-2-2幾丁聚醣-硫酸化軟骨素之濃度比對於其複合粒子形成之影響................46 4-2-2.1粒徑及界面電位分析.................................................46 4-2-2.2表面形貌分析.......................................................47 4-2-3反應pH值對於幾丁聚醣-硫酸化軟骨素複合粒子形成之影響..................52 4-2-3.1粒徑及界面電位分析.................................................52 4-2-3.2表面形貌分析.......................................................53 4-2-4幾丁聚醣分子量對於其複合粒子形成之影響...............................55 4-2-4.1粒徑及界面電位分析.................................................55 4-2-4.2表面形貌分析.......................................................56 4-3 5-FU/幾丁聚醣-硫酸化軟骨素奈米複合粒子之製備..........................62 4-3-1 5-FU/幾丁聚醣-硫酸化軟骨素奈米複合粒子之分子結構分析................62 4-4 5-FU/幾丁聚醣-硫酸化軟骨素複合粒子之藥物釋放系統分析..................64 4-4-1 5-FU之包覆率分析....................................................64 4-4-1.1 5-FU溶於甲醇之檢量線製作..........................................64 4-4-1.2 5-FU/幾丁聚醣-硫酸化軟骨素複合粒子製備方式對於5-FU包覆率之影響....64 4-4-1.3 起始添加之5-FU藥量對於其包覆率之影響..............................65 4-4-1.4 5-FU/幾丁聚醣-硫酸化軟骨素複合粒子合成時之pH值對於5-FU包覆率之影響 ..................................................................65 4-4-1.5 幾丁聚醣分子量對於複合粒子之5-FU包覆率影響........................65 4-4-2 5-FU之體外釋放分析..................................................71 4-4-2.1 5-FU溶於磷酸鹽緩衝液(PBS)之檢量線製作.............................71 4-4-2.2幾丁聚醣分子量對於其形成之5-FU/CTS-ChS複合粒子之體外釋放影響.......71 4-4-2.3 藥物釋放動力學之探討..............................................72 第五章、結論..............................................................78 參考文獻..................................................................79 誌謝......................................................................87

    [1] Jackanicz, T. M., Nash, H. A., Wise, D. L. and Gregory, J. B.,“Polylactic acid as a biodegradable carrier for contraceptive steroids.”Contraception, 8, 227-234, 1973.

    [2] Fernandez-Urrusuno, R., Calvo, P., Remunan-Lopez, J. L.,Villa-Jato, J. L. and Alonso, M. J.,“Enhancement of nasal absorption of insulin using chitosan nanoparticles.”Pharm. Res. 16, 1576-1581, 1999.

    [3] Wise, D. L., Fellman, T. D., Sanderson, J. E. and Wentworth, R. L.,“Lactide/glycolide acid polymers in: G. Geregoriadis (Ed.).” Drug Carriers in Biology and Medicine. Academic Press. London, 237-270, 1979.

    [4] Hu, Y., Jianga, X., Dinga, Y., Gea, H., Yuanb, Y. Yang, C., “Synthesis and characterization of chitosan–poly(acrylic acid) nanoparticles.” Biomaterials, 23, 3193-3201, 2002.

    [5] Penuziere, A., Ferrier, P., Dormard, A., “Chitosan-Chondroitin sulfate and chitosan-hyaluronate polyelectrolyte complexes physicalchemical aspects.” Carbohydr. Polym. 29, 317-323, 1996.

    [6] Muzzarelli, R. A. A., “Chitin. ”Pergramon Press, Oxford. UK, 1977.

    [7]楊惠嘉, “利用幾丁聚醣吸附卡馬西藍染料之研究.” 成功大學化學所碩士論文, p.5, 2003.

    [8] 王偉、秦汶、李素清、薄淑琴, “甲殼素的分子量”應用化學, 8(6), 85-87, 1991.

    [9] Roberts, G. A. F., “Chitin Chemistry.” pp: 65-83, “The Macmillan Press LTD.” London, pp: 1-53, 1992.

    [10]Lee F., Chitin and chitosan: Speciality biopolymers for foods, medicine and industry. 1989.

    [11]賴惠敏, “多醣類生物高分子幾丁質/幾丁聚醣在生物科技的應用.” 化工科技與商情, 32, 生技專欄, 2002.

    [13]王柏勝, “改質後幾丁聚醣/硫酸化軟骨素聚電解質錯合物作為蛋白質藥物載體之研究.” 高雄醫學大學化學所碩士論文, p.5, 2005.

    [14]蘇莉婷. “軟骨硫素在生物醫學上的應用.” 化工科技與商情, 41, 27-31, 2002.

    [15]Irit, G. K., Boris, Y., Adel , P., Abraham, R., “Phosphated crosslinked guar for colon-specific drug delivery I. Preparation andphysicochemical characterization.” J. Control. Rel. 63, 121-127, 2000.

    [16]S. A, Di-Capua N, R. A., “Cross-linked chondroitin sulfate: characterization for drug delivery purpose.” Biomaterial, 16, 473-478, 1996.

    [17]曾念國, “奈米科技應用於藥物傳輸的技術發展趨勢.” chap. 1, 工研院產經資訊中心, 2003.

    [18]范國烜,“幾丁聚醣奈米粒之製備及其應用於紅黴素控制釋放之探討.”海洋大學食品科學系碩士論文, p.45, 2003.

    [19]劉正雄 譯(Shargel, L. and Yu, A. B. C. 1993. Applied Biopharmaceutics and Pharmacokinetics.), “應用生物藥劑學與藥物動力學.” chap. 7, 合記圖書出版社, 台灣台北, 1994.

    [20]蔣浩恩, “抗發炎高分子前驅藥之酵素催化水解及動力學之探討.” 高雄醫學大學藥學研究所碩士論文, p.3, chap.2, 2001.

    [21]簡啟恆, “純化蒙脫石做為5-FU藥物載體於大腸癌治療之研究.” 台大材料所碩士論文, p.10, 1999.

    [22]Gokce M., Akada T. F., kiremitci-Gumusderelioglu M., “5-FU loaded pHEMA drainage implants for glaucoma-filtering surgery: device design and in vitro release kinetics.” Biomaterials, 17, 941-949, 1996.

    [23]Blanco M. D., Garcia O., Trigo R. M., Teijon J. M.,“5-Fluorouracil release from copolymeric hydrogels of itaconic acid monoester: I. Acrylamide-co-monomethyl itaconate.” Biomaterials, 17, 1061-1067, 1996.

    [24]Fang Y. E., Cheng Q., Lu X. B., “Kinetics of in vitro drug release from chitosan/gelatin hybrid membranes.” J. Appl. Polym. Sci., 68, 1751-1758, 1998.

    [25]Kipp, J.E., “The role of solid nanoparticle technology in the parenteral delivery of poorly water-soluble drugs.” Int. J. Pharm. 284, 109-122, 2004.

    [26]李昂. “奈米級顆粒在藥物輸遞的應用.” 化工資訊, 10, 44-55, 2001.

    [27]Gref, R., Minamitake, Y., Peracchia, M.T., Trubetskoy, V., Torchilin, V. and Langer, R. “Biodegradable long-circulating polymeric nanospheres.” Science. 263, 1600-1603, 1994.

    [28]Barratt, G.M., “Therapeutic applications of colloidal drug carriers.” Pharm. Sci. Technol. Today. 3(5), 163-171, 2000.

    [29]Zambaux, M. F., Bonneaux, F., Gref, R., Maincent, P., Dellacherie, E., Alonso, M. J., Labrude, P. and Vigneron, C., “Influence of experimental parameters on the characteristics of poly(lactic acid) nanoparticles prepared by double emulsion method.” J. Control. Rel. 50, 31-40, 1998.

    [30]Niwa, T., Takeuchi, H., Hino, T., Kunou, N. and Kawashima, Y., “Preparations of biodegradable nanospheres of water-soluble and insoluble drugs with D, L- lactide/ glycolide copolymer by a novel spontaneous emulsification solvent diffusion method and the drug release behavior.” J. Control. Rel. 25, 89-98, 1993.

    [31]Birnbaum, T. D., Kosmala, J. D., Henthorn, D. B. and Peppas, L. B., “Controlled release of β-estradiol from PLAGA microparticles: The effect of organic phase solvent on encapsulation and release.” J. Control. Rel. 65, 375-387, 2000.

    [32]Bodmeier, R. and McGinity, J. W., “Solvent selection in the preparation of poly(D,L-lactide) microsphere prepared by the solvent evaporation method.” Int. J. Pharm. 43, 179-186, 1988.

    [33]Allemann, E., Leroux, J. C., Gurnay, R. and Doelker, E., “In vitro extended-release properties of drug-loaded poly( D, L lactide acid) nanoparticles produced by a salting-out procedure.” Pharm. Res. 10, 1732-1737, 1993.

    [34]Quintanar, G. D., Ganem, Q. A., Alleman, E., Fessi, H. and Doelker, E. “Influence of stabilizer coating layer on the purification and freeze drying of poly(D, L- lactide acid) nanoparticles prepared by emulsification-diffusion technique.” J. Microencap. 15, 107-119, 1998.

    [35]Jung, T., Breitenbach, A. and Kissel, T., “Sulfobutylated poly(vinyl alcohol) -graft-poly(lactide-co-glyclide) facilitate the preparation of small negative charged biodegradable nanospheres for protein delivery.” J. Control. Rel. 67, 157-169, 2000.

    [36]Jackanicz, T. M., Nash, H. A., Wise, D. L. and Gregory, J. B., “Polylactic acid as a biodegradable carrier for contraceptive steroids.” Contraception, 8, 227-234, 1973.

    [37]Anderson, L. C., Wise, D. L. and Howes, J. F. “An injectable sustained release fertility control system.” Contraception, 13, 375-384, 1976.

    [38]Pitt, C. G., Gratzi, M. M., Jeffcot, A. R., Zweidinger, R. and Schindler, A., “Sustained release drug delivery systemsⅡ: factors affects release rate for poly(ε-caprolactone) and related biodegradable polyesters.” J. Pharm. Sci. 68, 1534-1538, 1979.

    [39]Calvo, P., Vila-Jato, J. L. and Alonso, M. J., “Comparative in vitro evaluation of several colloidal systems, nanoparticles, nanocapsules and nanoemulsions as ocular drug carriers.” J. Pharm. Sci. 85, 530-536, 1996.

    [40]陳慶源, “幾丁聚醣在藥物運送系統上之應用.” 食品工業, 32(4), 18-28, 2000.

    [41]Fernandez-Urrusuno, R., Calvo, P., Remunan-Lopez, J. L.,Villa-Jato, J. L. and Alonso, M. J., “Enhancement of nasal absorption of insulin using chitosan nanoparticles.” Pharm. Res. 16, 1576-1581, 1999.

    [42]Roy, K., Mao, H. Q., Huang, S. K. and Leong K. W., “Oral gene delivery with chitosan-DNA nanoparticles generates immunologic protection in a murine model of peanut allergy.” Nature Med. 5(4), 387-391, 1999.

    [43]Shu, X. Z., Zhu, K.J., “A novel approach to prepare tripolyphosphate:chitosan complex beads for controlled release drug delivery.” Int. J. Pharm. 201, 51-58, 2000.

    [44]Pan, Y., Li, Y. J., Zhao, H. Y., Zheng, J. M., Xu, H., Wei, G., Hao, J. S. and Cui, F. D., “Bioadhesive polysaccharide in protein delivery system: chitosan nanoparticles improve the intestinal absorption of insulin in vivo.” Int. J. Pharm. 249, 139-147, 2002.

    [45]Ma, Z. S., Yeoh, H. H. and Lim, L. Y., “Formulation pH modulate the interaction of insulin with chitosan nanoparticles.” J. Pharm. Sci. 91(6): 1396-1404, 2002.

    [46]Xu, Y. and Du, Y., “Effect of molecular structure of chitosan: protein delivery properties of chitosan nanoparticles.” Int. J. Pharm. 250 (44), 215-226, 2003.

    [47]Dumitriu, S., Chornet E., “Inclusion and release of proteins from polysaccharide-based polyion complexes.” Adv. Drug Deliv. Rev., 31, 223-246, 1998.

    [48]Berger, J., Reist, M., Mayer, J. M., Felt, O., Gurny, R., “Structure andinteractions in chitosan hydrogels formed by complexation or aggregation for biomedical applications.” Eur. J. Pharm. Biopharm., 57, 35-52, 2004.

    [49]Hoffman, A., S., “Hydrogels for biomedical applications.” Adv. Drug Deliv. Rev. 43, 3-12, 2002.

    [50]Hirano, S., Mizutani, C., Miura, A., “Formatoin of the polyelectrolyte complexes of some acidic glycosaminoglycans with partially N-acylated chitosans.” Biopolymers, 17, 805-810, 1978.

    [51]Mao, S., Shuai, X., Unger, F., Simon, M., Bi, D., Kissel, T., “The depolymerization of chitosan: effects on physicochemical and biological properties.” Int. J. Pharm. 281, 45-54, 2004.

    [52] Maghami, G.G., and Robert, G.A.F., “Evaluation of the viscometric constants for chitosan. Makromol.” Chem. 189, 195-200, 1988.

    [53] Aiba, S.-i., “Studies on chitosans: 1.Determination of the degree of N-acetylation of chitosan by ultraviolet spectrophotometry and gel permeation chromatography.” Int. J. Biol. Macromol. 8:p173-176, 1986.

    [54] Chen, Q, Hu, Y. Chen, Y., Jiang, X., Yang, Y., “Microstrcture formation and property of chitosan-poly(acrylic acid) nanoparticles prepared by macromolecular complex.” Macromlo. Biosci., 5, 993-1000, 2005.

    [55] Chavasit, V., Torres, J. A., “Chitosan-Poly(acrylic acid): Mechanism of Complex Formation and Potential Industrial Applications.” Biotechnol. Prog., 6, 2-6, 1990.

    [56] Bozkir, A., Saka, O. M., “Formulation and investigation of 5-FU nanoparticles with factorial design-based studies.” IL Farmaco, 60, 840–846, 2005.

    下載圖示 校內:2007-07-26公開
    校外:2007-07-26公開
    QR CODE