| 研究生: |
江凱焩 Chiang, Kai-Peng |
|---|---|
| 論文名稱: |
幾丁聚醣/硫酸化軟骨素奈米粒子之製備及其應用 Preparation and application of chitosan/chondroitin sulfate nanoparticles |
| 指導教授: |
洪敏雄
Hon, Ming-Hsiung |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 材料科學及工程學系 Department of Materials Science and Engineering |
| 論文出版年: | 2006 |
| 畢業學年度: | 94 |
| 語文別: | 中文 |
| 論文頁數: | 87 |
| 中文關鍵詞: | 幾丁聚醣 、藥物釋放 、硫酸化軟骨素 |
| 外文關鍵詞: | chitosan, chondroitin sulfate, drug release |
| 相關次數: | 點閱:85 下載:4 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究以自行設計的步階微滴設備,利用陰電性幾丁聚醣(CTS)與陽電性硫酸化軟骨素(ChS)兩種聚電解質藉著彼此間的靜電庫侖力吸引形成CTS-ChS奈米複合粒子。評估其做為5-FU藥物釋放載體的可行性。傅立葉紅外線光譜分析顯示,CTS的NH3與ChS的COO及OSO3產生鍵結,證實此兩種聚電解質以靜電吸引方式形成錯合物。實驗中分別改變CTS-ChS濃度比、反應pH值以及CTS分子量以觀察其對粒徑及界面電位之影響,最後在CTS-ChS濃度比4:3、反應pH=3以及CTS分子量為80 kDa的條件下粒徑大小為145.1±30 nm的複合微粒。
在藥物釋放的應用上,比較5-FU/CTS與ChS混合及CTS與5-FU/ChS混合兩種不同藥物包覆程序對藥物包覆率的影響,顯示後者所得之包覆率較高為42.5±1.1%;比較起始添加藥量對包覆率的影響,顯示起始添加藥量10 mg所得之包覆率最高為70.4±2.1%。此外,從不同反應pH值及不同CTS分子量的實驗發現到反應時的pH值越高或者CTS的分子量越大,所得之5-FU包覆率越高。而藥物釋放的結果則顯示,不論以600 kDa、200 kDa及80 kDa的CTS所合成的5-FU/CTS-ChS複合微粒,在藥物釋放動力學上均類似兩階段的Higuchi釋放模式,且分子量越小,5-FU的釋放率及釋放速率越大。
In this study, chitosan(CTS) and chondroitin sulfate(ChS), two poly-electrolytes, were used to form nanoparticles through electrostatic force by a step dropwise method. These particles were evaluated their application for drug delivery of 5-fluorouacail(5-FU). According to FTIR analysis, there exists the bonding of NH3 of CTS together with COO and OSO3 of ChS in the complexes. It demonstrates that the complexes are formed by electrostatic force of these two poly-electrolytes. Then, it is observed the influence of the concentration ratio of CTS/ChS, reaction pH value and the viscosity molecular weight(Mv) of CTS on the particle size and zeta potential of CTS-ChS particles. It is found that the CTS-ChS particles with average size of 145 nm could be obtained with the concentration ratio of CTS and ChS of 4:3, reacted in pH 3 condition and the Mv of CTS being 80 kDa.
The in-vitro release profiles of the 5-FU are established in phosphate buffer solution (PBS) pH=7.4 at 37℃. Encapsulation efficiency (EE) of drug for different mixing procedure of 5-FU/CTS with ChS or 5-FU/ChS with CTS is compared, the later shows a higher EE up to 42.5±1.1%. The influence of the amount of initial drug on the EE is shown that the highest EE up to 70.4±2.1% could be obtained for the addition of 10 mg. In addition, as the pH value or Mv of CTS increases, the EE of 5-FU would increase. The result of drug release shows that whether the Mv of CTS is 600 kDa, 200 kDa or 80 kDa, 5-FU/CTS-ChS particles follow two steps Higuchi model for the drug release kinetics. Besides, the release rate and release amount of 5-FU increase for the lower Mv of CTS.
[1] Jackanicz, T. M., Nash, H. A., Wise, D. L. and Gregory, J. B.,“Polylactic acid as a biodegradable carrier for contraceptive steroids.”Contraception, 8, 227-234, 1973.
[2] Fernandez-Urrusuno, R., Calvo, P., Remunan-Lopez, J. L.,Villa-Jato, J. L. and Alonso, M. J.,“Enhancement of nasal absorption of insulin using chitosan nanoparticles.”Pharm. Res. 16, 1576-1581, 1999.
[3] Wise, D. L., Fellman, T. D., Sanderson, J. E. and Wentworth, R. L.,“Lactide/glycolide acid polymers in: G. Geregoriadis (Ed.).” Drug Carriers in Biology and Medicine. Academic Press. London, 237-270, 1979.
[4] Hu, Y., Jianga, X., Dinga, Y., Gea, H., Yuanb, Y. Yang, C., “Synthesis and characterization of chitosan–poly(acrylic acid) nanoparticles.” Biomaterials, 23, 3193-3201, 2002.
[5] Penuziere, A., Ferrier, P., Dormard, A., “Chitosan-Chondroitin sulfate and chitosan-hyaluronate polyelectrolyte complexes physicalchemical aspects.” Carbohydr. Polym. 29, 317-323, 1996.
[6] Muzzarelli, R. A. A., “Chitin. ”Pergramon Press, Oxford. UK, 1977.
[7]楊惠嘉, “利用幾丁聚醣吸附卡馬西藍染料之研究.” 成功大學化學所碩士論文, p.5, 2003.
[8] 王偉、秦汶、李素清、薄淑琴, “甲殼素的分子量”應用化學, 8(6), 85-87, 1991.
[9] Roberts, G. A. F., “Chitin Chemistry.” pp: 65-83, “The Macmillan Press LTD.” London, pp: 1-53, 1992.
[10]Lee F., Chitin and chitosan: Speciality biopolymers for foods, medicine and industry. 1989.
[11]賴惠敏, “多醣類生物高分子幾丁質/幾丁聚醣在生物科技的應用.” 化工科技與商情, 32, 生技專欄, 2002.
[13]王柏勝, “改質後幾丁聚醣/硫酸化軟骨素聚電解質錯合物作為蛋白質藥物載體之研究.” 高雄醫學大學化學所碩士論文, p.5, 2005.
[14]蘇莉婷. “軟骨硫素在生物醫學上的應用.” 化工科技與商情, 41, 27-31, 2002.
[15]Irit, G. K., Boris, Y., Adel , P., Abraham, R., “Phosphated crosslinked guar for colon-specific drug delivery I. Preparation andphysicochemical characterization.” J. Control. Rel. 63, 121-127, 2000.
[16]S. A, Di-Capua N, R. A., “Cross-linked chondroitin sulfate: characterization for drug delivery purpose.” Biomaterial, 16, 473-478, 1996.
[17]曾念國, “奈米科技應用於藥物傳輸的技術發展趨勢.” chap. 1, 工研院產經資訊中心, 2003.
[18]范國烜,“幾丁聚醣奈米粒之製備及其應用於紅黴素控制釋放之探討.”海洋大學食品科學系碩士論文, p.45, 2003.
[19]劉正雄 譯(Shargel, L. and Yu, A. B. C. 1993. Applied Biopharmaceutics and Pharmacokinetics.), “應用生物藥劑學與藥物動力學.” chap. 7, 合記圖書出版社, 台灣台北, 1994.
[20]蔣浩恩, “抗發炎高分子前驅藥之酵素催化水解及動力學之探討.” 高雄醫學大學藥學研究所碩士論文, p.3, chap.2, 2001.
[21]簡啟恆, “純化蒙脫石做為5-FU藥物載體於大腸癌治療之研究.” 台大材料所碩士論文, p.10, 1999.
[22]Gokce M., Akada T. F., kiremitci-Gumusderelioglu M., “5-FU loaded pHEMA drainage implants for glaucoma-filtering surgery: device design and in vitro release kinetics.” Biomaterials, 17, 941-949, 1996.
[23]Blanco M. D., Garcia O., Trigo R. M., Teijon J. M.,“5-Fluorouracil release from copolymeric hydrogels of itaconic acid monoester: I. Acrylamide-co-monomethyl itaconate.” Biomaterials, 17, 1061-1067, 1996.
[24]Fang Y. E., Cheng Q., Lu X. B., “Kinetics of in vitro drug release from chitosan/gelatin hybrid membranes.” J. Appl. Polym. Sci., 68, 1751-1758, 1998.
[25]Kipp, J.E., “The role of solid nanoparticle technology in the parenteral delivery of poorly water-soluble drugs.” Int. J. Pharm. 284, 109-122, 2004.
[26]李昂. “奈米級顆粒在藥物輸遞的應用.” 化工資訊, 10, 44-55, 2001.
[27]Gref, R., Minamitake, Y., Peracchia, M.T., Trubetskoy, V., Torchilin, V. and Langer, R. “Biodegradable long-circulating polymeric nanospheres.” Science. 263, 1600-1603, 1994.
[28]Barratt, G.M., “Therapeutic applications of colloidal drug carriers.” Pharm. Sci. Technol. Today. 3(5), 163-171, 2000.
[29]Zambaux, M. F., Bonneaux, F., Gref, R., Maincent, P., Dellacherie, E., Alonso, M. J., Labrude, P. and Vigneron, C., “Influence of experimental parameters on the characteristics of poly(lactic acid) nanoparticles prepared by double emulsion method.” J. Control. Rel. 50, 31-40, 1998.
[30]Niwa, T., Takeuchi, H., Hino, T., Kunou, N. and Kawashima, Y., “Preparations of biodegradable nanospheres of water-soluble and insoluble drugs with D, L- lactide/ glycolide copolymer by a novel spontaneous emulsification solvent diffusion method and the drug release behavior.” J. Control. Rel. 25, 89-98, 1993.
[31]Birnbaum, T. D., Kosmala, J. D., Henthorn, D. B. and Peppas, L. B., “Controlled release of β-estradiol from PLAGA microparticles: The effect of organic phase solvent on encapsulation and release.” J. Control. Rel. 65, 375-387, 2000.
[32]Bodmeier, R. and McGinity, J. W., “Solvent selection in the preparation of poly(D,L-lactide) microsphere prepared by the solvent evaporation method.” Int. J. Pharm. 43, 179-186, 1988.
[33]Allemann, E., Leroux, J. C., Gurnay, R. and Doelker, E., “In vitro extended-release properties of drug-loaded poly( D, L lactide acid) nanoparticles produced by a salting-out procedure.” Pharm. Res. 10, 1732-1737, 1993.
[34]Quintanar, G. D., Ganem, Q. A., Alleman, E., Fessi, H. and Doelker, E. “Influence of stabilizer coating layer on the purification and freeze drying of poly(D, L- lactide acid) nanoparticles prepared by emulsification-diffusion technique.” J. Microencap. 15, 107-119, 1998.
[35]Jung, T., Breitenbach, A. and Kissel, T., “Sulfobutylated poly(vinyl alcohol) -graft-poly(lactide-co-glyclide) facilitate the preparation of small negative charged biodegradable nanospheres for protein delivery.” J. Control. Rel. 67, 157-169, 2000.
[36]Jackanicz, T. M., Nash, H. A., Wise, D. L. and Gregory, J. B., “Polylactic acid as a biodegradable carrier for contraceptive steroids.” Contraception, 8, 227-234, 1973.
[37]Anderson, L. C., Wise, D. L. and Howes, J. F. “An injectable sustained release fertility control system.” Contraception, 13, 375-384, 1976.
[38]Pitt, C. G., Gratzi, M. M., Jeffcot, A. R., Zweidinger, R. and Schindler, A., “Sustained release drug delivery systemsⅡ: factors affects release rate for poly(ε-caprolactone) and related biodegradable polyesters.” J. Pharm. Sci. 68, 1534-1538, 1979.
[39]Calvo, P., Vila-Jato, J. L. and Alonso, M. J., “Comparative in vitro evaluation of several colloidal systems, nanoparticles, nanocapsules and nanoemulsions as ocular drug carriers.” J. Pharm. Sci. 85, 530-536, 1996.
[40]陳慶源, “幾丁聚醣在藥物運送系統上之應用.” 食品工業, 32(4), 18-28, 2000.
[41]Fernandez-Urrusuno, R., Calvo, P., Remunan-Lopez, J. L.,Villa-Jato, J. L. and Alonso, M. J., “Enhancement of nasal absorption of insulin using chitosan nanoparticles.” Pharm. Res. 16, 1576-1581, 1999.
[42]Roy, K., Mao, H. Q., Huang, S. K. and Leong K. W., “Oral gene delivery with chitosan-DNA nanoparticles generates immunologic protection in a murine model of peanut allergy.” Nature Med. 5(4), 387-391, 1999.
[43]Shu, X. Z., Zhu, K.J., “A novel approach to prepare tripolyphosphate:chitosan complex beads for controlled release drug delivery.” Int. J. Pharm. 201, 51-58, 2000.
[44]Pan, Y., Li, Y. J., Zhao, H. Y., Zheng, J. M., Xu, H., Wei, G., Hao, J. S. and Cui, F. D., “Bioadhesive polysaccharide in protein delivery system: chitosan nanoparticles improve the intestinal absorption of insulin in vivo.” Int. J. Pharm. 249, 139-147, 2002.
[45]Ma, Z. S., Yeoh, H. H. and Lim, L. Y., “Formulation pH modulate the interaction of insulin with chitosan nanoparticles.” J. Pharm. Sci. 91(6): 1396-1404, 2002.
[46]Xu, Y. and Du, Y., “Effect of molecular structure of chitosan: protein delivery properties of chitosan nanoparticles.” Int. J. Pharm. 250 (44), 215-226, 2003.
[47]Dumitriu, S., Chornet E., “Inclusion and release of proteins from polysaccharide-based polyion complexes.” Adv. Drug Deliv. Rev., 31, 223-246, 1998.
[48]Berger, J., Reist, M., Mayer, J. M., Felt, O., Gurny, R., “Structure andinteractions in chitosan hydrogels formed by complexation or aggregation for biomedical applications.” Eur. J. Pharm. Biopharm., 57, 35-52, 2004.
[49]Hoffman, A., S., “Hydrogels for biomedical applications.” Adv. Drug Deliv. Rev. 43, 3-12, 2002.
[50]Hirano, S., Mizutani, C., Miura, A., “Formatoin of the polyelectrolyte complexes of some acidic glycosaminoglycans with partially N-acylated chitosans.” Biopolymers, 17, 805-810, 1978.
[51]Mao, S., Shuai, X., Unger, F., Simon, M., Bi, D., Kissel, T., “The depolymerization of chitosan: effects on physicochemical and biological properties.” Int. J. Pharm. 281, 45-54, 2004.
[52] Maghami, G.G., and Robert, G.A.F., “Evaluation of the viscometric constants for chitosan. Makromol.” Chem. 189, 195-200, 1988.
[53] Aiba, S.-i., “Studies on chitosans: 1.Determination of the degree of N-acetylation of chitosan by ultraviolet spectrophotometry and gel permeation chromatography.” Int. J. Biol. Macromol. 8:p173-176, 1986.
[54] Chen, Q, Hu, Y. Chen, Y., Jiang, X., Yang, Y., “Microstrcture formation and property of chitosan-poly(acrylic acid) nanoparticles prepared by macromolecular complex.” Macromlo. Biosci., 5, 993-1000, 2005.
[55] Chavasit, V., Torres, J. A., “Chitosan-Poly(acrylic acid): Mechanism of Complex Formation and Potential Industrial Applications.” Biotechnol. Prog., 6, 2-6, 1990.
[56] Bozkir, A., Saka, O. M., “Formulation and investigation of 5-FU nanoparticles with factorial design-based studies.” IL Farmaco, 60, 840–846, 2005.