簡易檢索 / 詳目顯示

研究生: 李哲全
Li, Jhe-Chyuan
論文名稱: 應用於銑床主軸位置節制之內藏式磁致動器
Embedded Magnetic Actuator To Regulate Spindle Position Deviation for Mill Machine
指導教授: 蔡南全
Tsai, Nan-Chyuan
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2010
畢業學年度: 98
語文別: 中文
論文頁數: 109
中文關鍵詞: 磁致動器自感測技術銑切加工
外文關鍵詞: Magnetic Actuator, Self-Sensing Technique, Milling Operation
相關次數: 點閱:50下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究主要設計、發展與驗證一創新內藏型圓柱陣列式磁致動器(Embedded Cylindrical Array Magnetic Actuator, ECAMA)並應用於CNC銑床。針對主軸因偏心及切削反作用力而衍生的位置動態偏擺進行補償。本研究所設計之ECAMA採用柱陣列設計,以增加繞線空間,除方便加工及組配外,更可在有限體積下,大幅提升線圈繞線匝數,與同體積之傳統磁浮軸承相比,在相同供電條件下,ECAMA之安匝數可輕易達到傳統設計的3倍以上,而且所能產生之磁驅動力亦高於傳統磁浮軸承設計的4倍以上。 此外,為了有效縮減製造成本,本研究設計一自感測模組(Self-sensing Module),取代傳統間隙感測器。除了大幅縮減成本外,更可簡化ECAMA整體結構複雜度。
    本研究最後成功製作一組ECAMA雛型,搭配訊號處理模組及工程軟體(MATLAB/Simulink),進行實際測試。為驗證ECAMA於高速銑切(10000RPM以上)下之效能,以高速馬達(最高轉速達24000RPM)搭配ECAMA並裝配於桌上型CNC銑床,以進行實際銑削試驗,並針對靜態、動態及銑切模式下,搭配PID控制器,以驗證其功能與穩定性。經實驗結果可知,本論文所提出之ECAMA確實具有節制主軸位置偏擺的效能。

    The purpose of this thesis is to develop an innovative Embedded Cylindrical Array Magnetic Actuator(ECAMA) which is to regulate spindle position for mill machines. For the purpose to increase the wound coil turns, the coils are wound on four I-shape silicon steel columns instead of the traditional yokes. Under identical power supply, the overall ampere-turns of ECAMA could be three times with respect to that by conventional Active Magnetic Bearing (AMB). As a result, the induced magnetic force by ECAMA is also enhanced and 3-times stronger than that by traditional AMBs. In addition, a Self-Sensing Module is proposed and equipped with ECAMA to waive the cost of gap sensors and reduce the complexity of ECAMA profile and assembly.
    Finally, a prototype of ECAMA is successfully built up. In order to verity the validity and efficacy of ECMA, a high speed motor (24000RPM) is equipped with the CNC milling machine. By employing the signal processing interface (Model DS-1104 by dSPACE) and the commercial software (MATLAB/Simulink), efficiency of ECAMA and the Self-Sensing Module are verified by the intensive experiments.

    中文摘要 I 英文摘要 II 致謝 III 目錄 IV 表目錄 VII 圖目錄 VIII 第一章 緒論 1 1-1 前言 1 1-2 文獻回顧 2 1-3 研究動機與目的 5 1-4 論文架構 6 第二章 內藏型圓柱陣列式磁致動器之設計與磁場分析 7 2-1 ECAMA之設計 7 2-2 磁浮力之推導 12 2-3 磁浮軸承之磁特性模擬分析 15 2-3.1 ECAMA之模擬分析 15 2-3.2 雙磁極同時激磁 25 2-3.3 磁浮軸承種類 29 2-4 自感測模組設計 37 2-4.1 自感測(Self-Sensing)之原理 37 2-4.2 自感測模組之設計 41 第三章 內藏型圓柱陣列式磁致動器之製造與功能校正 43 3-1 新式ECAMA雛形 43 3-2 ECAMA之驅動與自感測電路設計 49 3-2.1 驅動電路 49 3-3 ECAMA與自感測功能驗證與校正 59 3-3.1 硬體裝置簡介 59 3-3.2 ECAMA之磁力功能驗證 65 3-3.3 自感測模組之功能驗證與校正 68 第四章 內藏型圓柱陣列式磁致動器之實證 84 4-1 實驗配置與規劃 84 4-2 控制器設計 89 4-3 實驗結果 92 第五章 結論與未來展望 103 5-1 結論 103 5-2 未來展望與建議 104 參考文獻 106 附錄A 108 自述 109

    [1] J. Boehm, R. Gerber, J. R. Hartley, S. Whitley, “Development of active magnetic bearings for high speed rotors,” IEEE Transactions on Magnetics, Vol. 26, No. 5, pp.2544-2546,1990.
    [2] S. C. Mukhopadhyay, T. Ohjj, M. Iwahara, S. Yamada, “Design, analysis and control of a new repulsive-type magnetic bearing system,” IEE Proceedings: Electric Power Applications, Vol. 146, No. 1, pp. 33-40, 1999.
    [3] S. L. Chen, C. T. Hsu, “Optimal Design of a Three-Pole Active Magnetic Bearing,” IEEE Transactions on Magnetics, Vol. 38, No. 5, pp. 3458-3466, 2002.
    [4] H. Y. Kim, C. W. Lee, “Design and control of active magnetic bearing system with Lorentz force-type axial actuator,” Mechatronics, Vol. 16, No. 1, pp. 13-20, 2006.
    [5] D. Vischer, H. Bleuler, “Self-sensing Active Magnetic Levitation,” IEEE Transactions on Magnetics, Vol. 29. No. 2, pp. 1276-1281, 1993.
    [6] C. Choi, K. Park, “Self-sensing magnetic levitation using a LC resonant circuit,” Sensors and Actuators, Vol. 72, No. 2, pp. 169-177, 1999.
    [7] A. Schammass, R. Herzog, P. Buhler, H. Bleuler, “New results for self-sensing active magnetic bearings using modulation approach,” IEEE Transactions on Control Systems Technology, Vol. 13. No. 4, pp. 509-516, 2005.
    [8] Y. Kato, T. Yoshida, K. Ohniwa, “Self-sensing active magnetic bearings with zero-bias-current control,” Electrical Engineering in Japan, Vol. 165, No. 2, pp. 69-76, 2008.
    [9] K. Morita, T. Yoshida, K. Ohniwa, “Improvement of sensing characteristics of self-sensing active magnetic bearings,” Electrical Engineering in Japan, Vol. 166, No. 2, pp. 70-77, 2009.
    [10] 徐盛良,“磁浮軸承之磁極設計與撓性轉軸動態分析”,碩士論文,國立成功大學,民國94年。
    [11] A. H. Robbins, W. C. Miller, “Circuit analysis: theory and practice,” Thomson Delmar Learning, 2007.
    [12] N. C. Tsai, C. W. Chiang, H. Y. Li, “Innovative active magnetic bearing design to reduce cost and energy consumption,” Electromagnetics, Vol. 29, No. 5, pp. 406-420, 2009。
    [13] E. O. Doebelin, “Measurement System :Application and Design”, McGraw-Hill, 1990.
    [14] 陳建廷,“基於小波訊號處理之磁浮軸承系統鑑別”,碩士論文,國立成功大學,民國95年。
    [15] 浩司,“感測器的動作分析和100%利用”,建興出版社,民國82年。
    [16] N. C. Tsai, D. C. Chen, R. M. Lee, “Chatter Prevention for Milling Process by Acoustic Signal Feedback,” International Journal of Advanced Manufacturing Technology, Vol. 47, pp. 1013-1021, 2010.

    下載圖示 校內:2013-07-21公開
    校外:2014-07-21公開
    QR CODE