簡易檢索 / 詳目顯示

研究生: 呂庭佑
Lu, Ting-Yu
論文名稱: 無人超輕飛機系統設計與驗證
Design and Verification for Unmanned Ultra-light Aircraft System
指導教授: 林清一
Lin, Chin E.
蕭樂群
Shiau, Le-Chung
學位類別: 碩士
Master
系所名稱: 工學院 - 航空太空工程學系
Department of Aeronautics & Astronautics
論文出版年: 2012
畢業學年度: 100
語文別: 英文
論文頁數: 135
中文關鍵詞: 無人飛行載具超輕飛機
外文關鍵詞: UAV, Ultra-light Aircraft
相關次數: 點閱:140下載:7
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 近年來無人飛行載具的研究與應用越見普遍。然而,多數無人機的設計是以學術目的為主,無法執行高酬載與長時間的任務。大型的無人飛行載具往往研發費用驚人。超輕飛機轉換成無人操作,可以解決酬載的問題。本論文提供一個解決方案來處理這個問題與相關的限制。利用Eipper 超輕載具,搭配液壓系統的設計,完成一套以遙控駕駛,達成飛行操作的無人超輕系統,本論文說明了系統的研究過程。這項研究是基於電腦輔助設計作為設計工具,透過前述的想法,系統設計,製造修改並整合機構,建立無人超輕系統以進行測試。所建立的無人超輕系統酬載可達100 公斤,並可在低速低空環境下作業。

    In recent years, the research on and application of unmanned aerial vehicles (UAVs) is pervasive. However, general designs of these UAVs are for academic purpose. They are unable to carry high payload and longer work time. The larger size UAVs are too expensive to develop. To solve payload problem, an ultra-light aircraft is converted into unmanned operation. This thesis provides a solution to solve the problem and related limited. Using an Eipper ultra-light vehicle, a hydraulic system is designed and implemented for remotely piloting flight operation as an unmanned ultra-light system (UUS). This thesis illustrates the research process of the system. This research is based on hydraulic system as driving power of UUS, with the help of computer-aided design as design tool. Through the formation ideas, system design, manufacturing modification, and integration of mechanisms, the unmanned ultra-light system is built for tests. The constructing UUS is capable for 100 kg payload in low speed, low altitude operations.

    Chapter 1 Introduction 1 1.1 Motivation 1 1.1.1 Sky-net project 1 1.1.2 Ultra-light and UAV 3 1.1.3 Comparison of ultra-light to UAV 4 1.2 Objectives 7 1.2.1 Combination of an ultra-light into UAV 7 1.2.2 The advantage of combining two vehicles 7 1.2.3 Possible problems 8 1.3 Thesis overview 8 Chapter 2 Fundamental analysis of ultra-light aircraft 10 2.1 Introduction of Eipper ultra-light aircraft 10 2.1.1 Specifications of Eipper Quicksilver 11 2.1.2 Selection summary 15 2.2 Control surface requirement analysis 16 2.2.1 Rudder and nose wheel control 16 2.2.2 Elevator control 20 2.2.3 Aileron control 22 2.2.4 Throttle control 27 2.2.5 Brake control 28 2.3 Fuselage structure analysis 30 2.3.1 The main part of fuselage 30 2.3.2 Weight balance analysis 34 2.4 Actuator system consideration 35 2.4.1 Power unit 35 2.4.2 Power transmit unit 39 2.5 Remarks of UUS 41 Chapter 3 Mechanism consideration and design 42 3.1 The hydraulic system: 42 3.1.1 Battery 43 3.1.2 Motor and pump 43 3.1.3 Hydraulic cylinder and LVDT 45 3.1.4 Servo valve 46 3.1.5 General illustration of hydraulic system 47 3.2 Control surface mechanism 50 3.2.1 Rudder and nose wheel mechanism 50 3.2.2 Elevator mechanism 54 3.2.3 Aileron mechanism 56 3.2.4 Throttle mechanism 57 3.2.5 Brake mechanism 60 3.2.6 Summary 61 3.3 Control surface mechanism design 62 3.3.1 The method of designing mechanism 64 3.3.2 The real object and computer model 64 3.3.3 Elevator control mechanism design 70 3.3.4 Aileron control mechanism design 73 3.3.5 Brake control mechanism design 75 3.3.6 Throttle control mechanism design 76 3.3.7 Summery 77 3.4 Spatial arrangement of UUS 78 3.4.1 The bought non-movement units 78 3.4.2 The distribution of main units 82 3.5 Summary of design 83 Chapter 4 System integration 85 4.1 Exhibition 85 4.1.1 Illustration of rudder 85 4.1.2 Elevator and aileron 88 4.1.3 The brake part 89 4.2 Mechanism assembly 89 4.2.1 Main board’s unit 90 4.2.2 Modification of rudder’s mechanism 95 4.3 Connection of hydraulic tubes 98 4.3.1 Consideration of rout and connection of tubes 100 4.3.2 The setup of brake and the connection with tube 103 4.4 The assembly of UUS and management of mechanism 106 4.4.1 The result of combination of whole aircraft 106 4.4.2 Integration test 107 4.4.3 The management of mechanism and result 108 4.5 Summary 109 Chapter 5 Verification of unmanned ultra-light system 110 5.1 Motor test 110 5.1.1 Temperature and pressure 112 5.1.2 Temperature under enforce convection 113 5.1.3 Effect of air flow 114 5.2 Elevator test 116 5.2.1 100 % and 80 % of full stroke test in 2 second 116 5.2.2 80% of full stroke test in 2 second and 1 second 118 5.2.3 80% stroke test in 1 second and 0.5 second 119 5.2.4 40% in 0.3 second and 80% in 0.5 second 120 5.2.5 Summary of elevator test 121 5.3 Ruder test 122 5.3.1 100 % in 2 second and 80 % in 1 second stroke test 122 5.3.2 80 % stroke in 1 and 0.5 second test 124 5.3.3 80% in 0.5 second and 40% in 0.3 second test 125 5.3.4 Summary of rudder test 126 5.4 Aileron, throttle and brake test 126 5.5 Summary of test 127 Chapter 6 Conclusion and prospect 129 6.1 Conclusion 129 6.2 Prospect 131 References 133

    [1].Lin, C. E., et al., “Airborne antenna tracking for Sky-Net mobile communication”, Sensing Technology (ICST), 2011 Fifth International Conference, 2011, pp.569-574.
    [2].Chen, T. P., Digital Aircraft Instrument System of Ultra-light Aircraft with Digital Avionic, Master Thesis, Department of Aeronautics and Astronautics, NCKU, 2004.
    [3].Lai, Y. H., Design and Verification for Mission UAV, Master Thesis, Department of Aeronautics and Astronautics, NCKU, 2011.
    [4].Nashlie, H. S., Autopilot for an Ultra-Light, Fling Wing, Department of Electrical Engineering and Computer Sciences, College of Engineering, University of California, Berkley, 2006
    [5].Srovnal, V. J., Kotzian, J., ”Development of a Flight Control System for an Ultra-light Aircraft”, Proceedings of the International Multiconference on Computer Science and Information Technology, Vol. 3, 2008, pp. 745-750.
    [6].Skyhorse, Pub Co. Inc., Administration, Federal Aviation, and US Dept. of Transportation: Aircraft Flying Handbook, 2007.
    [7].Ali, H. G., Salah, S., Mitch, B., Jeremy, R., Todd, L., Calvin, H, A Rotary-wing Unmanned Air Vehicle for Aquatic Weed Surveillance and Management, Springer Science, 2009.
    [8].Eric, N. J., Sumit, M., Flight Simulation for the Development of an Experimental UAV, 2002.
    [9].Eipper Aircraft MXL II Datasheet, Quicksilver Mfg.®, California, U.S.A., Jun, 2012. Available on web:
    http://www.quicksilveraircraft.com/

    [10].Robert, N., Performance of an Electro-Hydrostatic Actuator on the F-18 Systems Research Aircraft, Edwards, California: Dryden Flight Research Center, 1997.
    [11].Taylor, J. W. R., The Lore of Flight, Universal Books Ltd, 1990.
    [12].Chen, Y., Wickramasinghe V., and Zimcik. D., “Active Control of a Hybrid Actuation System for Aircraft Vertical Fin Buffet Load Alleviation”, Aeronautical Journal, Vol. 110, No. 1107, May 2006, pp.315-26.
    [13].Sergey, E. L., "Electromechanical Flight Actuators for Advanced Flight Vehicles", IEEE Transactions on Aerospace and Electronic Systems Magazine, Vol. 35, No. 2, April 1990, pp. 511-18.
    [14].Garcia, A., Cusido, J., Ortega, J. A., Romeral L., “Reliable Electro-Mechanical Actuators in Aircraft”, IEEE Aerospace and Electronic Systems Magazine , Vol. 23, No. 8, August 2008, pp. 19.
    [15].Horstin, A., "Failsafe Hydraulic Actuator Flight Control for Jet Aircraft", Hydraulics & Pneumatics, Vol. 25, No. 8, 1972, pp. 69.
    [16].Hydraulic Power Packs, Series W80D Datasheet, Winner Hydraulics Co., Changhua, Taiwan, Jun. 2012. Available on web:
    http://www.winnerhydraulics.com/

    [17].Magnetostrictive Linear-Position Sensors Datasheet, MTS.® sensors, N.C., U.S.A., Jun. 2012. Available on web:
    http://www.mtssensors.com/

    [18].CXHC Compact cylinders Datasheet, JuFan Industrial, Tainan, Taiwan, Jun. 2012. Available on web:
    http://www.jufan.com.tw/

    下載圖示 校內:2017-08-03公開
    校外:2017-08-03公開
    QR CODE