| 研究生: |
陳俐妤 Chen, Li-Yu |
|---|---|
| 論文名稱: |
魚雷錨擲錨過程受海流作用下之影響與改良措施評析 Analysis and Improvement Assessment of Torpedo Anchor Installation Under Current Impacts |
| 指導教授: |
楊瑞源
Yang, Ray-Yeng |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 水利及海洋工程學系 Department of Hydraulic & Ocean Engineering |
| 論文出版年: | 2023 |
| 畢業學年度: | 111 |
| 語文別: | 中文 |
| 論文頁數: | 68 |
| 中文關鍵詞: | 魚雷錨 、FLOW-3D 、均勻流 、衝擊速度 、偏移角度 、觸地點 、適用度參數 |
| 外文關鍵詞: | Torpedo anchor, FLOW-3D, Uniform flow, Impact velocity, Displaced angle, Anchor location, Fitness parameter |
| 相關次數: | 點閱:90 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
近年來,海洋工程朝著深水區邁進,而海上浮式結構物亦日漸增加,隨之其錨碇系統成為重要議題。重力安裝錨(Gravity-installed anchor, GIA)為一種以錨體自重貫入底床進行安裝的錨碇基礎,其安裝效率高、成本低且不需借助額外安裝設施,而本文所使用形式為魚雷錨(Torpedo anchor),在國際上已有實際運用案例。本研究運用計算流體力學 (Computational fluid dynamics, CFD)軟體FLOW-3D進行魚雷錨流固耦合作用之數值模擬,探討魚雷錨在擲錨(安裝)高度85公尺下,物體於水中自由落下的運動過程變化,觀察錨前端至底床瞬間之落下時間、衝擊速度、偏移角度、水平位移與觸地點位置。
本研究先探討改變錨的尾翼外觀之擲錨表現,而魚雷錨於擲錨過程中可能受水動力環境之影響,因此本文使用均勻流模擬不同海流流速及入射流向,對擲錨過程之物體運動進行分析。依據模擬結果,當錨的尾翼外觀不同時,主要影響擲錨過程之因素為尾翼的展弦比,尾翼數量則次之;而當海流流速愈大且作用於錨上之面積愈小時,對錨產生之影響愈大。
然而,為了改善受海流作用下錨於擲錨過程中的表現,本文進一步探討了兩種優化方法,分別為調整錨的初始傾斜角度(姿態)以及輔以衝擊機構並施予初始加速度,並且藉由適用度參數,得出適用擲錨過程之優化方法。其中,海流流速為1.0 m/s 時當錨在具有初始傾斜角度?=5°的條件下時能達到較好之結果,施予初始加速度則在加速度為0.5g時有最佳之擲錨結果,不僅衝擊速度上升且偏移角度也下降,使錨較快速、筆直地貫入底床,得以有效提升擲錨的準確度。本研究之成果,能提供未來魚雷錨實際安裝之工程參考依據。
The purpose of this study is to simulate the free fall motion of a torpedo anchor in the water with installation height of 85 meters by using numerical software, FLOW-3D. In addition, the observation among falling time, impact velocity, displaced angle, horizontal displacement, and anchor location of the anchor's tip end to the seabed are discussed in this research.
To investigate the impact of changing the appearance of the anchor's fin and the potential influence of the hydrodynamic environment during installation, this study adopts uniform flow to simulate different current velocities and directions. The result shows that the larger current velocity and smaller loading area on the anchor leads to the greater impact on the anchor.
In order to enhance the precision of the anchor installation under current impacts, this study further discusses improvement methods, which are adjusting the initial angle and applying the initial acceleration of the anchor. Finally, using the fitness parameter to select the improvement method suitable for the installation. In this way, the results of this study could become an engineering reference for the practical installation of torpedo anchors in the future.
[1] Brandão, F. E. N., Henriques, C. C. D., Araújo, J., Ferreira, O. C. G., & dos Santos Amaral, C. (2006). Albacora Leste field development-FPSO P-50 mooring system concept and installation. In Offshore technology conference. OnePetro.
[2] Bureau of Safety and Environmental Enforcement, BSEE. Retrieved from https://www.bsee.gov/what-we-do/renewable-energy/renewable-energy-policy-statement
[3] de Carvalho e Silva, D. F. (2010). CFD hydrodynamic analysis of a torpedo anchor directional stability. In International Conference on Offshore Mechanics and Arctic Engineering (Vol. 49149, pp. 783-791).
[4] Fernandes, A. C., dos Santos, M. F., de Araujo, J. B., Lima de Almeida, J. C., Diniz, R. R., & Matos, V. (2005). Hydrodynamic aspects of the Torpedo anchor installation. In International Conference on Offshore Mechanics and Arctic Engineering (Vol. 41952, pp. 485-493).
[5] Fernandes, A. C., Bastos de Araujo, J., Lima de Almeida, J. C., Diniz Machado, R., & Matos, V. (2006). Torpedo anchor installation hydrodynamics.
[6] Fernandes, A. C., Sales Jr, J. S., Silva, D. F., & Diederichs, G. R. (2011). Directional stability of the torpedo anchor pile during its installation. The IES Journal Part A: Civil & Structural Engineering, 4(3), 180-189.
[7] FLOW-3D® Version 12.0 Users Manual (2018). FLOW-3D [Computer software]. Santa Fe, NM: Flow Science, Inc. https://www.flow3d.com
[8] Harlow, F. H., & Welch, J. E. (1965). Numerical calculation of time‐dependent viscous incompressible flow of fluid with free surface. The physics of fluids, 8(12), 2182-2189.
[9] Hasanloo, D., Wang, H., & Yu, G. (2010). Preliminary tests on the terminal velocity of a torpedo anchor in still water. In The Twentieth International Offshore and Polar Engineering Conference. OnePetro.
[10] Hasanloo, D., Pang, H., & Yu, G. (2012). On the estimation of the falling velocity and drag coefficient of torpedo anchor during acceleration. Ocean Engineering, 42, 135-146.
[11] Hossain, M. S., O'LOUGHLIN, C. D., & Kim, Y. (2015). Dynamic installation and monotonic pullout of a torpedo anchor in calcareous silt. Géotechnique, 65(2), 77-90.
[12] Medeiros, C. J. (2002). Low cost anchor system for flexible risers in deep waters. In Offshore technology conference. OnePetro.
[13] Monfort, D. T. (2017). Design optimization of the mooring system for a floating offshore wind turbine foundation. Instituto Superior Técnico.
[14] O’Beirne, C., O’Loughlin, C. D., & Gaudin, C. (2017). A release-to-rest model for dynamically installed anchors. Journal of Geotechnical and Geoenvironmental Engineering, 143(9), 04017052.
[15] Raaj, S. K., Saha, N., & Sundaravadivelu, R. (2022). Freefall hydrodynamics of torpedo anchors through experimental and numerical analysis. Ocean Engineering, 243, 110213.
[16] Shelton, J. T. (2007). OMNI-Maxtrade anchor development and technology. In OCEANS 2007 (pp. 1-10). IEEE.
[17] Vryhof Anchors. (2018). Vryhof manual.
[18] Zimmerman, E. H., Smith, M., & Shelton, J. T. (2009). Efficient gravity installed anchor for deepwater mooring. In Offshore technology conference. OnePetro.
[19] 劉君, & 韓聰聰. (2019). 新型锚固基础——动力锚. 北京: 科学出版社.
[20] 陳俞任. (2012). 以Flow-3D模擬內孤立波越過障礙物之行為. 國立中山大學.
[21] 董天宏. (2015). 鱼雷锚水动力特性分析. 华南理工大学.