| 研究生: |
林錦鵬 Lin, Chin-Peng |
|---|---|
| 論文名稱: |
利用碎形維度做乳房攝影之微鈣化偵測 Detection of Micro-calcifications in Mammograms Using Fractal Dimension |
| 指導教授: |
戴顯權
Tai, Shen-Chuan |
| 學位類別: |
碩士 Master |
| 系所名稱: |
電機資訊學院 - 電腦與通信工程研究所 Institute of Computer & Communication Engineering |
| 論文出版年: | 2013 |
| 畢業學年度: | 101 |
| 語文別: | 英文 |
| 論文頁數: | 58 |
| 中文關鍵詞: | 微鈣化偵測 、電腦輔助診斷系統 、碎形維度 、光密度 、Haralick紋理特徵 、周圍區域相關性方法(SRDM) |
| 外文關鍵詞: | Micro-calcification detection, computer-aided diagnosis (CAD) system, fractal dimension, optical density, surrounding region dependence method (SRDM) |
| 相關次數: | 點閱:124 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
乳癌的一項重要警訊即微鈣化群集的出現。然而,因為在乳房X光影像上微鈣化模糊的特性及較差的對比度,使得人工診斷耗時且費神。因此,電腦輔助診斷系統的使用得以協助專家診斷,做為參考依據。
在本論文中,微鈣化的診斷機制分為四個階段。首先,取得精細的紋理同時抑制雜訊。在第二階段中,利用碎形維度及標準差找出候選區域。將取出的候選區域連接以形成感興趣區域 (ROI)。隨後,用光密度轉換增強所有ROI的對比度。第三階段, Haralick的紋理特徵及周圍區域相關性(SRDM)這些紋理分析的方法分別被應用在灰階和光密度轉換後的ROI。最後,在訓練和測試時,使用四折的交叉驗證程序伴隨著逐步線性區別分析。訓練出的區別函數用以分辨微鈣化及正常區域。
利用成大醫院提供的81件乳房攝影案例做實驗。利用本篇論文所提出的方法,可以達到當靈敏度96.1%時平均每張影像的偽陽數為7.66個及敏感度92.8%時每張影像偽陽數3.09個。在ROC曲線下的面積則為0.983±0.004。實驗結果顯示出本論文提出之系統在靈敏度及偽陽數上取得平衡且可預期減少專家的負擔。
One of the significant early signs of breast cancer is the appearance of micro-calcification (MC) clusters. However, it is time-consuming and exhausting to diagnose mammograms manually due to fuzzy nature of MCs and poor contrast in images. Thus, computer aided diagnosis systems are brought to assist specialists in diagnosis as a second opinion.
The MC detection scheme proposed in the thesis is composed of four stages. Firstly, detailed texture is acquired along with noise suppression. Secondly, fractal dimension and standard deviation are both applied to find candidate regions. These candidates are then connected to obtain regions of interest (ROIs). Then optical density (OD) transformation is implemented to all ROIs to enhance contrast. Thirdly, some texture analysis methods such as Haralick’s texture features and surrounding region dependence method are employed to each ROI in two forms, one in gray-level and the other in OD. Eventually, a four-fold cross validation procedure with stepwise linear discriminant analysis is used for training and testing. The trained discriminant function is used to distinguish regions with MCs from normal ones.
An experiment is conducted with 81 cases from National Cheng Kung University Hospital. The sensitivity of the proposed system achieves 96.1% with average 7.66 false positives per image (FPs/I) and 92.8% with 3.09 FPs/I. The area under ROC curve is 0.983±0.004. The results show that the proposed system strikes a balance between sensitivity and false positives and is expected to help the radiologists reduce their workload.
[1] “American Cancer Society, Cancer Facts and Figures,” [Online]. Available: http://www.cancer.org/research/cancerfactsstatistics.
[2] “Department of Health, Executive Yuan, R.O.C. (Taiwan), Statistical Outcome 2011,” [Online]. Available: http://www.doh.gov.tw/CHT2006/index_populace.aspx.
[3] I. Bankman, Ed., “Handbook of Medical Image Processing and Analysis,” Vol. 2, 2008.
[4] J. Bozek, M. Mustra, K. Delac, and M. Grgic, “A survey of image processing algorithms in digital mammography,” Mult. Sig. Process. and Commun, vol. 231, pp. 631-657, 2009.
[5] V. Bhateja and S. Devi, ”A novel framework for edge detection of microcalcifications using a non-linear enhancement operator and morphological filter,” Proceedings of the 3rd International Conference on Electronics Computer Technology, vol. 5, pp. 419-424, 2011.
[6] H.D. Cheng, X. Cai, X. Chen, L. Hu and X. Lou, “Computer-aided detection and classification of microcalcifications in mammograms: a survey,” Elsevier Pattern Recognition, vol. 36, pp. 2967-2991, 2003.
[7] F. Dehghan and H. Abrishami-Moghaddam, ”Comparison of SVM and neural network classifiers in automatic detection of clustered microcalcifications in digitized mammgrams,” Proceedings of the 7th International Conf. on Machine learning and Cybernetics, 2008.
[8] L. Fausett, “Fundamentals of Neural Networks,” Prentice-Hall, Englewood Cliffs, NJ, 1994.
[9] R. C. Gonzalez and R. E. Woods, “Digital Image Processing,” Prentice Hall, Third Edition, ISBN 978-986-154-762-6.
[10] R. M. Haralick, K. Shanmugam, and I. Dinstein, “Texture features for image classification,” IEEE Trans. Syst. Man. Cybern., Vol. SMC-3, No. 6, pp. 610-621, 1973.
[11] Haralick, Robert M., and Linda G. Shapiro, “Computer and Robot Vision,” Addison-Wesley, Vol I, pp. 28-48, 1992.
[12] D. B. Kopans, “Breast Imaging.” Philadelphia, PA: J. B. Lippincoff, 1989, pp. 81-95.
[13] J. K. Kim and H. W. Park, “Statistical textural features for detection of microcalcifications in digitized mammograms,” IEEE Transactions on Medical Imaging, vol. 18, pp. 231-238, 1999.
[14] A. N. Karahaliou, I. S. Boniatis, S. G. Skiadopoulos, F. N. Sakellaropoulos, N. S. Arikidis, E. A. Likaki, G. S. Panayiotakis, and L. I. Costaridou, “Breast cancer diagnosis: analyzing texture of tissue surrounding microcalcifications,” IEEE Transactions on Information Technology in Biomedicine, Vol. 12, pp. 731-738, 2008.
[15] B.J. Leiner, V.Q. Lorena, T.M. Cesar, M.V. Lorenzo, ”Microcalcifications detection system through discrete wavelet analysis and image enhancement techniques,” Proceedings of the 40th Southeastern Symposium on System Theory, pp. 118-121, 2008.
[16] M. Muttarak, “Film Screen-Mammography TEXT&ATLAS,” PB Book Foreign Books, Bangkok Thailand.
[17] B. B. Mandelbrot, “The Fractal Geometry of Nature,” Freeman, New York, 1977.
[18] J. Mohanalin, Prof. P. K. Kalra, and Dr. Nirmal Kumar, “Fuzzy based micro calcification segmentation,” Proceedings of the International Conference on Electrical and Computer Engineering, pp.49-52, 2008.
[19] James Nguyen, David Fleiszer, “Interactive Mammography Analysis Web Tutorial,” McGill Medicine, Molson Medical Informatics, 2002.
[20] S. Pleg, J. Naor, R. Hartley, D. Avnit, “Mutiple resolution texture analysis and classification,” IEEE Transactions on pattern analysis and machine intelligence, pp. 518–523, 1984.
[21] A. Papadopoulos, D. I. Fotiadis and L. Costaridou, “Improvement of microcalcification cluster detection in mammography utilizing image enhancement techniques,” Computers in Biology and Medicine, Vol. 38, pp. 1045-1055, 2008.
[22] R. A. Smith, “Epidemiology of breast cancer categorical course in physics,” Tech. Aspects Breast Imaging, Radiol. Soc. North Amer., pp. 21-33, 1993.
[23] M. Sameti, R. Ward, J. Morgan-Parkes, and B. Palcic, “Image feature extraction in the last screening mammograms prior to detection of breast cancer,” IEEE Journal on Signal Processing, vol. 3, No. 1, pp. 46-52, 2009.
[24] C. M. Tiu, T. L. Jong and C. W. Hsieh, “Self organizing map neural network with fuzzy screening for micro-calcifications detection on mammograms,” IEEE Conference on Soft Computing in Industrial Applications, 2008.
[25] S. Thovutikul, S. Auephanwiriyakul, and N. Theera-Umpon, “Microcalcification detection in mammograms using interval type-2 fuzzy logic system with automatic membership function generation,” IEEE International Conference on Fuzzy Systems, 2010.
[26] N. C. Tsai, H. W. Chen, S. L. Hsu, “Computer-aided diagnosis for early-stage breast cancer by using wavelet transform,” Computerized Medical Imaging and Graphics, 2011.
[27] P. Wei, S. Zhao, D. Lu, G. Chen, “A method of detection micro-calcifications in mammograms using wavelets and adaptive thresholds,” Proceedings of the 2nd International Conference on Bioinformatics and Biomedical Engineering, pp.2361-2364, 2008.