| 研究生: |
陳韋先 Chen, Wei-Hsien |
|---|---|
| 論文名稱: |
暫態光電壓/光電流量測技術應用於染料敏化太陽能電池之研究 Transient photovoltage/photocurrent characterization for dye-sensitized solar cells |
| 指導教授: |
陳昭宇
Chen, Peter |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 光電科學與工程學系 Department of Photonics |
| 論文出版年: | 2012 |
| 畢業學年度: | 100 |
| 語文別: | 中文 |
| 論文頁數: | 99 |
| 中文關鍵詞: | 染料敏化太陽能電池 、暫態量測 、缺陷能態密度 、光電化學 、太陽能電池物理 |
| 外文關鍵詞: | dye-sensitized solar cell, transient, electrochemistry, dynamics of charge transport |
| 相關次數: | 點閱:66 下載:23 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
我們透過量測暫態光電壓/光電流衰減的方法對染料敏化太陽能電池(DSC)進行分析,透過暫態的方法在某照光強度下輸入一微擾光訊號觀察暫態光電壓在開路狀態下與光電流在短路狀態下微擾結束的衰減情形來探測元件內部電子的壽命與缺陷能態密度分布,而在不同工作條件下量測光電壓與光電流的衰減可以得知載子傳輸動力學的相關參數,此外加上載子萃取的方法能夠更精確得量測載子總電荷量以及化學電容。
目前國內外太陽能電池研究機構亦有使用暫態之量測方法,但普遍需要自行建構量測系統並無商業化機台提供選購,因此我們與阜拓科技產學合作共同開發暫態光電壓/光電流量測系統,此為多功能之量測系統包含:電流-電壓特性曲線量測模組、暫態光電壓/光電流量測模組、載子萃取量測模組、與光電流線性檢測。
我們利用暫態量測技術應用在染料敏化太陽能電池的分析上,探討不同商用品之二氧化鈦光陽極在相同載子濃度下的載子壽命與缺陷能態密度分布;並利用暫態分析電解液內不同TBP濃度對DSC的影響;此外我們利用染料SQ2與TF5共吸附使元件在吸收光譜的部分互補,創造出更佳的光電轉換效率,在此也利用暫態技術分析染料共吸附在二氧化鈦奈米晶體表面上之復合反應、DOS分布與不同工作狀態下的傳輸參數。
We characterize dye-sensitized solar cells (DSCs) by photovoltage/photocurrent transient measurement. Devises are biased by Keithley 2400 with different light intensity imposed by a pulse as a perturbation. Transient technic is a small-amplitude time-resolved method which can obtain parameters of charge recombine and transport kinetics. Measuring photovoltage decay at open-circuit condition and photocurrent decay at short circuit condition with different light bias we can get electron lifetime, recombination rate constant, chemical capacitance, density of trap states, photoinduced charge density verse different open-circuit voltage. Measuring photovoltage and photocurrent decay at different working condition we can obtain electron transport time, charge collection efficiency, diffusion coefficient, diffusion length at different bias and light intensity.
So many research center in the word use transient measurement system to characterize DSCs. In Taiwan there is no commercialized transient system so we develop the system with Forter which is an instrument company. The system includes I-V measurement, transient measurement, charge extraction, and current linearity test.
We use the system to compare two commercial TiO2 for DSCs. We analyze devises by electron lifetime at different charge concentration, capacitance at different open-circuit voltage, and density of states distribution. In the electrolyte, we discuss how TBP affect the DSC. Furthermore, we use transient technic to see what happened when dye SQ2 and dye TF5 co-sensitized on the TiO2. By complementing the absorbed spectrum of SQ2 and TF5, we want to create more efficient DSCs.
1. Becquerel, E., Compt. Rend., 1839. 9: p. 145.
2. Adams, W.G., R.E. Day, and P. Roy, Soc. London, 1877. A25: p. 113.
3. Fritts, C.E., Am. J. Sci., 1883. 26: p. 465.
4. Ohl, R.S., US Patent, 1941. No.2(402): p. 622.
5. Riordan, M. and L. Hoddeson, Crystal Fire, Norton, New York, 1997.
6. Alferov, Z.I., et al., Sov. Phys. Semicond., 1971. 4: p. 2047.
7. Bonnet, D. and M.D. Archer, Series on Photoconversion of Solar Energy, 2001. 1: p. 245-269.
8. Rau, U. and H.W. Schock, Clean Electricity from Photovoltaics, Series on Photoconversion of Solar Energy, 2001. 1: p. 277-332.
9. Wronski, C.R. and D.E. Carlson, Clean Electricity from Photovoltaics, Series on Photoconversion of Solar Energy, 2001. 1: p. 199-236.
10. Halls, J.J.M. and R.H. Friend, Clean Electricity from Photovoltaics, Series on Photoconversion of Solar Energy, 2001. 1: p. 377-432.
11. B.O'Regan and M. Grätzel, Nature, 1991. 353: p. 737.
12. O'Regan, B.C. and M. Gratzel, Nature, 1991. 353(6346): p. 737-740.
13. Shockley, W. and H.J. Queisser, J. Appl. Phys., 1961. 32 p. 510.
14. 孫允武. pn二極體簡介. 2006.
15. Torheim, O., Elementary Physics of P-N Junctions. 2007.
16. Green, M.A., et al., Progress in Photovoltaics: Research and Applications, 2012. 20(1): p. 12-20.
17. Zhao, J., et al., APPLIED PHYSICS LETTERS, 1998. 73(14): p. 1991-1993.
18. Schultz, O., S.W. Glunz, and G.P. Willeke, Progress in Photovoltaics: Research and Applications, 2004. 12(7): p. 553-558.
19. Petermann, J.H., et al., Progress in Photovoltaics: Research and Applications, 2012. 20(1): p. 1-5.
20. Keevers, M.J., et al., Progress in Photovoltaics: Research and Applications, 2008. 16: p. 235-239.
21. 莊嘉琛, 太陽能工程-太陽電池篇. 台北:全華科技圖書, 1997.
22. M.K.Nazeeruddin, et al., J.Am.Chem.Soc, 2005. 127: p. 16835.
23. O'Regan, B.C., et al., The Effect of Al2O3 Barrier Layers in TiO2/Dye/CuSCN Photovoltaic Cells Explored by Recombination and DOS Characterization Using Transient Photovoltage Measurements. The Journal of Physical Chemistry B, 2005. 109(10): p. 4616-4623.
24. O'Regan, B.C. and F. Lenzmann, Charge Transport and Recombination in a Nanoscale Interpenetrating Network of n-Type and p-Type Semiconductors: Transient Photocurrent and Photovoltage Studies of TiO2/Dye/CuSCN Photovoltaic Cells. The Journal of Physical Chemistry B, 2004. 108(14): p. 4342-4350.
25. Peter, L., Transport, trapping and interfacial transfer of electrons in dye-sensitized nanocrystalline solar cells. Journal of Electroanalytical Chemistry, 2007. 599(2): p. 233-240.
26. Wang, Q., et al., Characteristics of High Efficiency Dye-Sensitized Solar Cells†. The Journal of Physical Chemistry B, 2006. 110(50): p. 25210-25221.
27. Zhang, Z., et al., Influence of 4-Guanidinobutyric Acid as Coadsorbent in Reducing Recombination in Dye-Sensitized Solar Cells. The Journal of Physical Chemistry B, 2005. 109(46): p. 21818-21824.
28. Zhang, Z., et al., Effects of ω-Guanidinoalkyl Acids as Coadsorbents in Dye-Sensitized Solar Cells. The Journal of Physical Chemistry C, 2006. 111(1): p. 398-403.
29. Wang, M., et al., Surface Design in Solid-State Dye Sensitized Solar Cells: Effects of Zwitterionic Co-adsorbents on Photovoltaic Performance. Advanced Functional Materials, 2009. 19(13): p. 2163-2172.
30. Sommeling, P.M., et al., Influence of a TiCl4 Post-Treatment on Nanocrystalline TiO2 Films in Dye-Sensitized Solar Cells. The Journal of Physical Chemistry B, 2006. 110(39): p. 19191-19197.
31. O'Regan, B.C., et al., Measuring Charge Transport from Transient Photovoltage Rise Times. A New Tool To Investigate Electron Transport in Nanoparticle Films. The Journal of Physical Chemistry B, 2006. 110(34): p. 17155-17160.
32. O'Regan, B.C., et al. Comparison of the field and Fermi level dependence of transport and recombination in polymer/C60 cells and solid state dye-sensitized cells. 2006. SPIE.
33. Chen, P., et al., High Open-Circuit Voltage Solid-State Dye-Sensitized Solar Cells with Organic Dye. Nano Letters, 2009. 9(6): p. 2487-2492.
34. Boschloo, G. and A. Hagfeldt, Characteristics of the Iodide/Triiodide Redox Mediator in Dye-Sensitized Solar Cells. Accounts of Chemical Research, 2009. 42(11): p. 1819-1826.
35. Gr, auml, and M. tzel, Mesoscopic Solar Cells for Electricity and Hydrogen Production from Sunlight. Chemistry Letters, 2005. 34(1): p. 8-13.
36. Marcus, R.A. and N. Sutin, Electron transfers in chemistry and biology. Biochimica et Biophysica Acta (BBA) - Reviews on Bioenergetics, 1985. 811(3): p. 265-322.
37. Fabregat-Santiago, F., et al., Correlation between Photovoltaic Performance and Impedance Spectroscopy of Dye-Sensitized Solar Cells Based on Ionic Liquids. The Journal of Physical Chemistry C, 2007. 111(17): p. 6550-6560.
38. Wang, Q., J.-E. Moser, and M. Grätzel, Electrochemical Impedance Spectroscopic Analysis of Dye-Sensitized Solar Cells. The Journal of Physical Chemistry B, 2005. 109(31): p. 14945-14953.
39. Fabregat-Santiago, F., et al., Electron Transport and Recombination in Solid-State Dye Solar Cell with Spiro-OMeTAD as Hole Conductor. Journal of the American Chemical Society, 2008. 131(2): p. 558-562.
40. Jennings, J.R. and L.M. Peter, A Reappraisal of the Electron Diffusion Length in Solid-State Dye-Sensitized Solar Cells. The Journal of Physical Chemistry C, 2007. 111(44): p. 16100-16104.
41. Krüger, J., et al., Charge Transport and Back Reaction in Solid-State Dye-Sensitized Solar Cells: A Study Using Intensity-Modulated Photovoltage and Photocurrent Spectroscopy. The Journal of Physical Chemistry B, 2003. 107(31): p. 7536-7539.
42. Nazeeruddin, M.K., et al., Acid−Base Equilibria of (2,2‘-Bipyridyl-4,4‘-dicarboxylic acid)ruthenium(II) Complexes and the Effect of Protonation on Charge-Transfer Sensitization of Nanocrystalline Titania. Inorganic Chemistry, 1999. 38(26): p. 6298-6305.
43. Hulstrom, R., R. Bird, and C. Riordan, Spectral solar irradiance data sets for selected terrestrial conditions. Solar Cells, 1985. 15(4): p. 365-391.
44. http://pveducation.org/pvcdrom/appendicies/standard-solar-spectra.
45. http://www.1023world.net/diy/spectra/
46. O'Regan, B.C., S. Scully, and A.C. Mayer, J. Phys. Chem. B, 2005. 109: p. 4616-4623.
47. Huang, S.Y., et al., J. Phys. Chem. B, 1997. 101 (14): p. 2576-2582.
48. Halme, J., et al., Device Physics of Dye Solar Cells. Advanced Materials, 2010. 22(35): p. E210-E234.
49. Hagfeldt, A., et al., Dye-Sensitized Solar Cells. Chemical Reviews, 2010. 110(11): p. 6595-6663.
50. Lagemaat, J.v.d. and A.J. Frank, J. Phys. Chem. B, 2001. 105: p. 11194-11205.
51. Duffy, N.W., L.M. Peter, and K.G.U. Wijayantha, Electrochemistry Communications, 2000. 2(4): p. 262-266.
52. Peter, L.M., et al., Transport and interfacial transfer of electrons in dye-sensitized nanocrystalline solar cells. Journal of Electroanalytical Chemistry, 2002. 524–525(0): p. 127-136.
53. 郭大銓, 微波合成二氧化鈦奈米晶體在染料敏化太陽能電池之應用. 2011.
54. Boschloo, G., et al., Optimization of dye-sensitized solar cells prepared by compression method. Journal of Photochemistry and Photobiology A: Chemistry, 2002. 148(1–3): p. 11-15.
55. Schlichthörl, G., et al., Band Edge Movement and Recombination Kinetics in Dye-Sensitized Nanocrystalline TiO2 Solar Cells: A Study by Intensity Modulated Photovoltage Spectroscopy. The Journal of Physical Chemistry B, 1997. 101(41): p. 8141-8155.
56. Chandrasekharan, N. and P.V. Kamat, Improving the Photoelectrochemical Performance of Nanostructured TiO2 Films by Adsorption of Gold Nanoparticles†. The Journal of Physical Chemistry B, 2000. 104(46): p. 10851-10857.
57. Kuang, D., et al., Co-sensitization of Organic Dyes for Efficient Ionic Liquid Electrolyte-Based Dye-Sensitized Solar Cells. Langmuir, 2007. 23(22): p. 10906-10909.
58. Geiger, T., et al., Molecular Design of Unsymmetrical Squaraine Dyes for High Efficiency Conversion of Low Energy Photons into Electrons Using TiO2 Nanocrystalline Films. Advanced Functional Materials, 2009. 19(17): p. 2720-2727.