| 研究生: |
陳玟慈 CHEN, Wen-Tzu |
|---|---|
| 論文名稱: |
開放式餐飲空間以簡易水冷降溫之熱舒適探討──以街屋型早餐店為例 An Investigation of Thermal Comfort in Open-Plan Dining Spaces with Simple Evaporative Cooling system: A Case Study of Townhouse Breakfast Shops |
| 指導教授: |
潘振宇
Pan, Chen-Yu |
| 學位類別: |
碩士 Master |
| 系所名稱: |
規劃與設計學院 - 建築學系 Department of Architecture |
| 論文出版年: | 2025 |
| 畢業學年度: | 113 |
| 語文別: | 中文 |
| 論文頁數: | 160 |
| 中文關鍵詞: | 開放式空間 、街屋型早餐店 、水冷 、熱舒適 、簡易 、低成本 、TSV |
| 外文關鍵詞: | Open Space, Shophouse Breakfast Eatery, Water Cooling, Thermal Comfort, Simple, Low-cost, TSV |
| 相關次數: | 點閱:14 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在全球暖化與都市熱島效應背景下,熱環境問題日益嚴峻,在台灣,常見的街屋建築地面層常作為店面並採開放式經營,其中多為傳統中小型早餐店。這類空間除面臨烹飪設備產熱問題,其建築形式亦多為狹長型且僅有單一主要通風口,室內通風不良,高溫問題在氣候變遷下更為顯著。然而,多數業者為兼顧成本而不願使用空調,在成本與舒適度間面臨兩難,或受限於既有建築結構與預算,難以導入複雜高成本的改造方案。因此本研究欲探討兼具簡易、經濟、節能效益之水冷系統於此類空間應用後之熱舒適改善及最佳化策略。研究方法採自製小型水冷系統,在不同環境條件及使用策略下進行實驗,並透過問卷調查使用者的TSV與TCV以解析熱環境期待與熱適應行為。研究結果顯示,原始物理環境條件對水冷系統的降溫效果影響極大,在高溫>33°C且低濕<50%RH的環境下得以展現最佳降溫效能,有機會降溫>2°C,而在開放空間中使用水冷有助於維持溫度穩定或減緩升溫幅度、穩定濕度並促進氣流流動之特性。實務應用建議當環境溫度>30°C時將水冷置於開口處,可使TSV在-1至1的舒適範圍內,延長水冷使用時長對氣流循環亦有助益,>60%的受訪者認為風速舒適;25-30°C時將水冷置於室內使用效果較佳,近70%受訪者感覺舒適,但需避免長時間於室內使用導致局部區域過冷,將水冷置於開口處並延長使用時長,對於改善熱舒適與氣流感受效果佳;20-25°C時,建議短暫置於開口處輔助氣流循環為主。另外,若現況完全依賴空調的開放式餐飲空間改為與水冷併用,即使調升設定溫度整體舒適度仍更佳,濕度與氣流滿意度均有提升,稍滿意至滿意的比例增加40%以上。整體而言,在副熱帶開放式餐飲空間中,人可接受更寬廣的溫熱條件、對偏涼環境的適應力較高、可接受微暖(TSV=1)至涼爽(TSV=-2)、對風速要求較高、熱環境偏好微涼(TSV=-1)。水冷的應用在簡易、經濟、舒適間取得平衡,並賦予空間節能的潛力。
Global warming and urban heat island effects intensify thermal environment issues, notably in Taiwan's common open-plan shophouse breakfast eateries. These narrow, poorly ventilated spaces, burdened by cooking heat, face exacerbated high temperatures due to climate change. Operators often shun costly air conditioning, caught between comfort and cost, with limited retrofit options. This study investigates a simple, economical, and energy-efficient evaporative cooling system for thermal comfort improvement, application potential, and optimization strategies in these settings. Methodology involved experiments with a self-made evaporative cooler under varied conditions and usage strategies, with TSV/TCV surveys analyzing user expectations and adaptive behaviors.Results show initial environmental conditions significantly impact cooling. Optimal performance (>2°C reduction) occurred in high-temperature (>33°C), low-humidity (<50%RH) conditions. Evaporative cooling also stabilized temperatures, humidity, and promoted airflow in open spaces. Practical guidelines emerged: at >30°C, placement at openings maintained TSV within -1 to 1, with extended use aiding circulation. Between 25-30°C, indoor use was effective, though overcooling risks with prolonged use; placement at openings with extended use also improved comfort. For 20-25°C, short-term use at openings primarily aided air circulation. Furthermore, combining evaporative cooling with existing air conditioning improved overall comfort and satisfaction even at higher AC setpoints (e.g., 27°C), with satisfaction increasing by over 40%.Overall, users in subtropical open-plan eateries accept wider thermal ranges, adapt well to cooler conditions (TSV 1 to -2), demand higher air speeds, and prefer slightly cool environments (TSV -1). Evaporative cooling offers a balance of simplicity, economy, and comfort, with significant energy-saving potential for these prevalent eateries.
中文文獻
[1] 陳睿翊(2017)。自然通風教室採光與熱環境實測及模擬。碩士論文,國立成功大學建築學系,台南市。
[2] 簡君翰(2015)。自然通風會議廳熱舒適度與節能效益解析-以綠色魔法學校國際會議廳為例。博士論文,國立成功大學建築學系,台南市。
[3] 曾淑翎(2015)。運用強制排風設備提升建築物自然通風換氣率之策略研究-以單棟透天型民宅為例。碩士論文,建國科技大學,彰化市。
[4] 吳仁豪(2014)。中央通風井設計對大樓自然通風及熱舒適度影響之研究。碩士論文,國立台北科技大學,台北市。
[5] 廖珮辰(2016)。以 CFD 與實測探討盆缽式屋頂農園對室內熱環境影響之研究。碩士論文,逢甲大學建築學系,台中市。
[6] 陳啟中(2018)。建築物理概論 (三版)。詹氏發行。
[7] 經濟部能源局(2014)。連鎖便利商店及餐飲業節能輔導成果報告。
[8] 黃浩瑜(2021)。熱溼氣候下連棟透天厝自然通風策略之研究探討-以楠梓區為例。碩士論文,國立高雄大學建築學系,高雄市。
[9] 周立蘅(2015)。以適應熱舒適觀點探討建築室內熱環境表現—以基隆市辦公空間為例。碩士論文,中原大學建築學系,桃園市。
[10] 廖珮如(2023)。探討自然通風對幼兒園室內熱舒適之影響。碩士論文,逢甲大學建築學系,台中市。
[11] 黃教誠(2004)。大學教室熱舒適範圍之實測調查研究。碩士論文,逢甲大學建築與都市計畫所,台中市。
[12] 吳鳳蓁(2025)。自然通風對住宅室內舒適度之影響-以台中市某集合住宅為例。碩士論文,逢甲大學建築學系,台中市。
[13] 林子平(2024)。溫度的正義:全球沸騰時代該如何消弭升溫所造成的各種不公?。台北市:商周出版。
[14] 黃瑞隆(2013)。複合式通風應用於臺灣潛力分析之研究。内政部建築研究所
[15] 賴榮平(1980)。台灣地區建築通風問題之採討。建築師雜誌P.17~33,台北市。
外文文獻
[1] Arens, E., Humphreys, M., de Dear, R., & Fanger, P. O. (2010). Adaptive thermal comfort standards for buildings.ASHRAE Transactions,116(1), 177-189.
[2] ASHRAE Standard 55. (2017).Thermal environmental conditions for human occupancy. Atlanta, GA: American Society of Heating, Refrigerating and Air-Conditioning Engineers.
[3] ASHRAE Handbook of Fundamentals (2021), Chapter 9 "Thermal Comfort," Table 1 "Typical Clothing Insulation Values
[4] Ainsworth, B.E., Haskell, W.L., Herrmann, S.D., Meckes, N., Bassett, D.R., Tudor-Locke, C., Leon, A.S. (2011).Compendium of Physical Activities: a second update of codes and MET values.Medicine & Science in Sports & Exercise,43(8), 1575-81.
[5] Ávila-Hernández, A., Simá, E., & Ché-Pan, M. (2023). Research and development of green roofs and green walls in Mexico: A review. Science of The Total Environment, 856, 158978.
[6] Bartzis, J.G., Vlachogiannis, D. and Sfetsos, A., Thematic area 5: Best practice advicefor environmental flows. The ONET-CFD Network Newsletter, Vol. 2, No. 4, pp. 34-39, 2004.
[7] COST Action 732. Best practice guideline for the CFD simulation of flows in the urban environment. 2007.
[8] CEN (2007).EN 15251: Indoor environmental input parameters for design and assessment of energy performance of buildings addressing indoor air quality, thermal environment, lighting and acoustics. Brussels: European Committee for Standardization.
[9] de Dear, R.J.,Brager, G.S. (1998). Developing a model of thermal adaptation and preference.ASHRAE Transactions,104(1), 145-167.
[10] de Dear, R.J.,Brager, G.S. (2002). Thermal adaptation in the built environment: A literature review.Energy and Buildings,34(2), 123-131.
[11] EN 15251. (2007).Indoor environmental input parameters for design and assessment of energy performance of buildings addressing indoor air quality, thermal environment, lighting and acoustics. Brussels, Belgium: European Committee for Standardization.
[12] Fanger, P.O. (1970). Thermal comfort: Analysis and applications in environmental engineering. Copenhagen: Danish Technical Press.
[13] Humphreys, M.A. (1995). Thermal comfort temperatures and the habits of clothing.ASHRAE Transactions,101(1), 581-597.
[14] Launder, B.E., Spalding, D.B.. Computer methods in applied mechanics and engineering. Numerical Calculation of Turbulence, Vol3(2), 269-289, 1974.
[15] Nicol, J.F. & Humphreys, M.A. (2002). Adaptive thermal comfort and sustainable thermal standards for buildings. Energy and Buildings,34(6), 563-572.
[16] Olesen,B.W.,Fanger, P.O., Jensen, K.L.,Nielsen, P.E. (1982)。Draft criteria for sedentary man in cold environments.ASHRAE Transactions,88(2), 1041-1058
[17] Olesen, B. W., D’Ambrosio Alfano, F. R., Palella, B. I., & Riccio, G. (Eds.). (2020).Annex 69 Final Report: Strategy and practice of adaptive thermal comfort in low energy buildings. Paris, France: IEA Energy in Buildings and Communities Programme (IEA EBC)
[18] Poorova, Z., Vranay, F., AlHosni, M. S., & Vranayova, Z. (2016). Importance of Different Vegetation Used on Green Roofs in Terms of Lowering Temperature and Water Retention. Procedia Engineering, 162, 39–44.
[19] Richardson, M., & McCracken, E. C. (1966). Work-Surface Levels and Human Energy Expenditure1. Journal of the American Dietetic Association, 48(3), 192–198.
[20] Strobel, Brian R., Stowell, Richard R., & Short,Ted H. (1999).Evaporative Cooling Pads: Use in Lowering Indoor Air Temperature. NebGuide G99-1399-A. Lincoln, NE: UNL Extension.
[21] Tejero-González, A., & Franco-Salas, A. (2021). Optimal operation of evaporative cooling pads: A review.Renewable and Sustainable Energy Reviews,151, 1116382.
[22] Yun, H., Nam, I., Kim, J., Yang, J., Lee, K., & Sohn, J. (2014). A field study of thermal comfort for kindergarten children in Korea: An assessment of existing models and preferences of children. Building and Environment, 75, 182–189.
網路資源
[1] 行政院公共工程委員會(2010)。綠建築推廣與應用。http://www.pcc.gov.tw/
[2] 外牆隔熱層https://www.diacrete.com.tw/insulation/exterior-wall/
[3] 雙層屋頂https://www.chungya.tw/component/k2/item/6-2016-03-14-00-45-14.html
[4] 屋頂通風排氣裝置https://www.getkaung.com.tw/cht/mobile/products.php?func=p_detail&p_id=4&pc_parent=1
[5] 屋頂綠化-綠色魔法學校https://www.msgt.org.tw/
[6] Low-E玻璃https://www.taiwanglass.com/product_list.php?sid=197
[7] 複層玻璃https://www.fu-hwa.com.tw/insulating-glass/
[8] 通風天井https://www.hongdaad.com.tw/Product-Item_61944.html
[9] 風道https://www.b-studio.com.tw/tw/%E5%AE%A4%E5%85%A7%E9%80%9A%E9%A2%A8%E8%A8%AD%E8%A8%88/
[10] 機械通風https://www.cool-wind.com/
[11] 排送風機https://www.chunhao.com.tw/product-detail-2518799.html
[12] 經濟部能源局(2020)。節約能源推廣與應用手冊。https://www.moea.gov.tw
[13] U.S. Department of Energy (2022).Commercial Buildings Energy Data Book. https://www.eia.gov/consumption/commercial/data/2022/
[14] U.S. Department of Energy (2023).Thermostats and Temperature Settings. https://www.energy.gov/
[15] U.S. Environmental Protection Agency (2023).Commercial Buildings.https://www.epa.gov
[16] Franklin Energy Services (2017).Restaurant Energy Efficiency. https://www.franklinenergy.com
[17] 台灣電力公司(2023)。節電小撇步。https://www.taipower.com.tw/
[18] 台東縣環境保護局(2022)。炎炎夏日落實冷氣節能減碳小技巧 省電又省錢。https://ttepb.taitung.gov.tw/News_Content.aspx?n=13490&s=117313
[19] 前真之(まえ・まさゆき).(n.d.).夏を涼しく暮らすコツを考えよう|いごこちの科学 NEXT ハウス.http://replan.ne.jp/content/igokochi1/
[20] 商用水冷扇https://reurl.cc/Z4MQmA
[21] 水冷(環保)空調https://www.jc-motor.com.tw/product-DC%E7%92%B0%E4%BF%9D%E7%A9%BA%E8%AA%BF-pro4-8.html